Skip to main content

Mathematical and Computational Foundations of Recurrence Quantifications

  • Chapter
  • First Online:
Recurrence Quantification Analysis

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Real-world systems possess deterministic trajectories, phase singularities and noise. Dynamic trajectories have been studied in temporal and frequency domains, but these are linear approaches. Basic to the field of nonlinear dynamics is the representation of trajectories in phase space. A variety of nonlinear tools such as the Lyapunov exponent, Kolmogorov–Sinai entropy, correlation dimension, etc. have successfully characterized trajectories in phase space, provided the systems studied were stationary in time. Ubiquitous in nature, however, are systems that are nonlinear and nonstationary, existing in noisy environments all of which are assumption breaking to otherwise powerful linear tools. What has been unfolding over the last quarter of a century, however, is the timely discovery and practical demonstration that the recurrences of system trajectories in phase space can provide important clues to the system designs from which they derive. In this chapter we will introduce the basics of recurrence plots (RP) and their quantification analysis (RQA). We will begin by summarizing the concept of phase space reconstructions. Then we will provide the mathematical underpinnings of recurrence plots followed by the details of recurrence quantifications. Finally, we will discuss computational approaches that have been implemented to make recurrence strategies feasible and useful. As computers become faster and computer languages advance, younger generations of researchers will be stimulated and encouraged to capture nonlinear recurrence patterns and quantification in even better formats. This particular branch of nonlinear dynamics remains wide open for the definition of new recurrence variables and new applications untouched to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (University Press, Cambridge, 1997)

    MATH  Google Scholar 

  2. F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, ed. by D. Rand, L.-S. Young. Lecture Notes in Mathematics, vol. 898 (Springer, Berlin, 1981), pp. 366–381

    Google Scholar 

  3. N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, Geometry from a time series. Phys. Rev. Lett. 45(9), 712–716 (1980)

    Article  ADS  Google Scholar 

  4. L. Cao, Practical method for determining the minimum embedding dimension of a scalar time series. Physica D 110(1–2), 43–50 (1997)

    Article  ADS  MATH  Google Scholar 

  5. M.B. Kennel, R. Brown, H.D.I. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Article  ADS  Google Scholar 

  6. A.M. Fraser, H.L. Swinney, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. J.P. Zbilut, J.-M. Zaldívar-Comenges, F. Strozzi, Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data. Phys. Lett. A 297(3–4), 173–181 (2002)

    Article  ADS  MATH  Google Scholar 

  8. F.M. Atay, Y. Altıntaş, Recovering smooth dynamics from time series with the aid of recurrence plots. Phys. Rev. E 59(6), 6593–6598 (1999)

    Article  ADS  Google Scholar 

  9. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5–6), 237–329 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. J.-P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3), 617–656 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. H.D.I. Abarbanel, R. Brown, J.J. Sidorowich, L.S. Tsimring, The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65(4), 1331–1392 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. E. Ott, Chaos in Dynamical Systems (University Press, Cambridge, 1993)

    MATH  Google Scholar 

  13. H. Poincaré, Sur la probleme des trois corps et les équations de la dynamique. Acta Math. 13, 1–271 (1890)

    MATH  Google Scholar 

  14. J.H. Argyris, G. Faust, M. Haase, An Exploration of Chaos (North Holland, Amsterdam, 1994)

    MATH  Google Scholar 

  15. J.-P. Eckmann, S. Oliffson Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)

    Article  ADS  Google Scholar 

  16. N. Marwan, A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 164(1), 3–12 (2008)

    Article  MathSciNet  Google Scholar 

  17. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, 120–141 (1963)

    Article  ADS  Google Scholar 

  18. G. Robinson, M. Thiel, Recurrences determine the dynamics. Chaos 19, 023104 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Hirata, S. Horai, K. Aihara, Reproduction of distance matrices from recurrence plots and its applications. Eur. Phys. J. Spec. Top. 164(1), 13–22 (2008)

    Article  Google Scholar 

  20. N. Marwan, How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifurcat. Chaos 21(4), 1003–1017 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Faure, H. Korn, A new method to estimate the Kolmogorov entropy from recurrence plots: its application to neuronal signals. Physica D 122(1–4), 265–279 (1998)

    Article  ADS  Google Scholar 

  22. M. Thiel, M.C. Romano, J. Kurths, R. Meucci, E. Allaria, F.T. Arecchi, Influence of observational noise on the recurrence quantification analysis. Physica D 171(3), 138–152 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. M. Thiel, M.C. Romano, J. Kurths, Analytical Description of Recurrence Plots of white noise and chaotic processes. Appl. Nonlinear Dyn. 11(3), 20–30 (2003)

    Google Scholar 

  24. L. Matassini, H. Kantz, J.A. Hołyst, R. Hegger, Optimizing of recurrence plots for noise reduction. Phys. Rev. E 65(2), 021102 (2002)

    Google Scholar 

  25. S. Schinkel, O. Dimigen, N. Marwan, Selection of recurrence threshold for signal detection. Eur. Phys. J. Spec. Top. 164(1), 45–53 (2008)

    Article  Google Scholar 

  26. G.M. Mindlin, R. Gilmore, Topological analysis and synthesis of chaotic time series. Physica D 58(1–4), 229–242 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. M. Koebbe, G. Mayer-Kress, Use of recurrence plots in the analysis of time-series data, in Proceedings of SFI Studies in the Science of Complexity, vol. XXI, ed. by M. Casdagli, S. Eubank (Addison-Wesley, Redwood City, 1992), pp. 361–378

    Google Scholar 

  28. J.P. Zbilut, C.L. Webber Jr., Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3–4), 199–203 (1992)

    Article  ADS  Google Scholar 

  29. J. Theiler, Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A 34(3), 2427–2432 (1986)

    Article  ADS  Google Scholar 

  30. J. Gao, Z. Zheng, Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Phys. Rev. E 49, 3807–3814 (1994)

    Article  ADS  Google Scholar 

  31. V. Balakrishnan, G. Nicolis, C. Nicolis, Recurrence time statistics in deterministic and stochastic dynamical systems in continuous time: A comparison. Phys. Rev. E 61(3), 2490–2499 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  32. E.G. Altmann, E.C. da Silva, I.L. Caldas, Recurrence time statistics for finite size intervals. Chaos 14(4), 975–981 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. L.M. Little, P. McSharry, S.J. Roberts, D.A.E. Costello, I.M. Moroz, Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMed. Eng. OnLine 6(23), 1–19 (2007)

    Google Scholar 

  34. E.J. Ngamga, D.V. Senthilkumar, A. Prasad, P. Parmananda, N. Marwan, J. Kurths, Distinguishing dynamics using recurrence-time statistics. Phys. Rev. E 85(2), 026217 (2012)

    Google Scholar 

  35. J.B. Gao, H.Q. Cai,s On the structures and quantification of recurrence plots. Phys. Lett. A 270(1–2), 75–87 (2000)

    Google Scholar 

  36. C.L. Webber Jr., J.P. Zbilut, Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994)

    Google Scholar 

  37. J.P. Zbilut, C.L. Webber Jr., Recurrence quantification analysis: Introduction and historical context. Int. J. Bifurcat. Chaos 17(10), 3477–3481 (2007)

    Article  MATH  Google Scholar 

  38. P. Grassberger, I. Procaccia, Characterization of strange attractors. Phys. Rev. Lett. 50(5), 346–349 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  39. J.P. Zbilut, N. Marwan, The Wiener-Khinchin theorem and recurrence quantification. Phys. Lett. A 372(44), 6622–6626 (2008)

    Article  ADS  MATH  Google Scholar 

  40. D.P. Lathrop, E.J. Kostelich, Characterization of an experimental strange attractor by periodic orbits. Phys. Rev. A 40(7), 4028–4031 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  41. R. Gilmore, Topological analysis of chaotic dynamical systems. Rev. Mod. Phys. 70(4), 1455–1529 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. N. Marwan, M. Thiel, N.R. Nowaczyk, Cross recurrence plot based synchronization of time series. Nonlinear Process. Geophys. 9(3/4), 325–331 (2002)

    Article  ADS  Google Scholar 

  43. M.C. Romano, M. Thiel, J. Kurths, I.Z. Kiss, J. Hudson, Detection of synchronization for non-phase-coherent and non-stationary data. Europhys. Lett. 71(3), 466–472 (2005)

    Article  ADS  Google Scholar 

  44. N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Recurrence plot based measures of complexity and its application to heart rate variability data. Phys. Rev. E 66(2), 026702 (2002)

    Google Scholar 

  45. E.J. Ngamga, A. Nandi, R. Ramaswamy, M.C. Romano, M. Thiel, J. Kurths, Recurrence analysis of strange nonchaotic dynamics. Phys. Rev. E 75(3), 036222 (2007)

    Google Scholar 

  46. N. Marwan, J.F. Donges, Y. Zou, R.V. Donner, J. Kurths, Complex network approach for recurrence analysis of time series. Phys. Lett. A 373(46), 4246–4254 (2009)

    Article  ADS  MATH  Google Scholar 

  47. R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, Recurrence networks – A novel paradigm for nonlinear time series analysis. New J. Phys. 12(3), 033025 (2010)

    Google Scholar 

  48. R.V. Donner, M. Small, J.F. Donges, N. Marwan, Y. Zou, R. Xiang, J. Kurths, Recurrence-based time series analysis by means of complex network methods. Int. J. Bifurcat. Chaos 21(4), 1019–1046 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  49. R.V. Donner, J. Heitzig, J.F. Donges, Y. Zou, N. Marwan, J. Kurths, The geometry of chaotic dynamics – a complex network perspective. Eur. Phys. J. B 84, 653–672 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  50. A. RĂ©nyi, Probability Theory (North-Holland, Amsterdam, 1970)

    Google Scholar 

  51. P. Grassberger, I. Procaccia, Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 9(1–2), 2591–2593 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  52. P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractors. Physica D 9(1–2), 189–208 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. N. Marwan, S. Schinkel, J. Kurths, Recurrence plots 25 years later – gaining confidence in dynamical transitions. Europhys. Lett. 101, 20007 (2013)

    Article  ADS  Google Scholar 

  54. O.E. Rössler, An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  ADS  Google Scholar 

  55. Y. Zou, R.V. Donner, J.F. Donges, N. Marwan, J. Kurths, Identifying complex periodic windows in continuous-time dynamical systems using recurrence-based methods. Chaos 20(4), 043130 (2010)

    Google Scholar 

  56. J.P. Zbilut, A. Giuliani, C.L. Webber Jr., Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Phys. Lett. A 246(1–2), 122–128 (1998)

    Article  ADS  Google Scholar 

  57. N. Marwan, J. Kurths, Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A 302(5–6), 299–307 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. N. Marwan, J. Kurths, Line structures in recurrence plots. Phys. Lett. A 336(4–5), 349–357 (2005)

    Article  ADS  MATH  Google Scholar 

  59. A. Porta, G. Baselli, N. Montano, T. Gnecchi-Ruscone, F. Lombardi, A. Malliani, S. Cerutti, Classification of coupling patterns among spontaneous rhythms and ventilation in the sympathetic discharge of decerebrate cats. Biol. Cybern. 75(2), 163–172 (1996)

    Article  Google Scholar 

  60. M.C. Romano, M. Thiel, J. Kurths, W. von Bloh, Multivariate recurrence plots. Phys. Lett. A 330(3–4), 214–223 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Y. Zou, M.C. Romano, M. Thiel, N. Marwan, J. Kurths, Inferring indirect coupling by means of recurrences. Int. J. Bifurcat. Chaos 21(4), 1099–1111 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  62. N. Marwan, Y. Zou, N. Wessel, M. Riedl, J. Kurths, Estimating coupling directions in the cardio-respiratory system using recurrence properties. Philos. Trans. R. Soc. A 371(1997), 20110624 (2013)

    MathSciNet  Google Scholar 

  63. W. Feller, An Introduction to Probability Theory and Its Applications, vol. 1 (Wiley, New York, 1950)

    MATH  Google Scholar 

  64. D.C. Brock, Understanding Moore’s Law: Four Decades of Innovation (Chemical Heritage Foundation, Philadelphia, 2006)

    Google Scholar 

  65. C.L. Webber Jr., Quantitative Analysis of Respiratory Cell Activity. PhD Dissertation, Loyola University Chicago, 1974

    Google Scholar 

  66. N. Marwan, Encounters With Neighbours – Current Developments Of Concepts Based On Recurrence Plots And Their Applications. PhD thesis, University of Potsdam, 2003

    Google Scholar 

  67. B. Kernighan, D. Ritchie, The C Programming Language (Prentice Hall, Englewood Cliffs, 1978)

    Google Scholar 

  68. C.L. Webber, Jr., Introduction to recurrence quantification analysis. RQA version 14.1 README.PDF. 2012

    Google Scholar 

  69. N. Marwan. CRP Toolbox 5.17, 2013, platform independent (for Matlab)

    Google Scholar 

  70. E. Kononov, Visual Recurrence Analysis 4.9, 2009, only for Windows

    Google Scholar 

  71. N. Thomasson, T.J. Hoeppner, C.L. Webber Jr., J.P. Zbilut, Recurrence quantification in epileptic EEGs. Phys. Lett. A 279(1–2), 94–101 (2001)

    Article  ADS  Google Scholar 

  72. C.L. Webber Jr., J.P. Zbilut, Recurrence Quantification Analysis of Nonlinear Dynamical Systems (National Science Foundation, Arlington, 2005), pp. 26–94

    Google Scholar 

  73. D.J. McFarland, W.A. Sarnacki, J.R. Wolpaw, Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng. 7(3), 036007 (2010)

    Google Scholar 

  74. K. Shockley, M. Butwill, J.P. Zbilut, C.L. Webber Jr., Cross recurrence quantification of coupled oscillators. Phys. Lett. A 305(1–2), 59–69 (2002)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Marwan .

Editor information

Editors and Affiliations

Appendix: Mathematical Models

Appendix: Mathematical Models

To illustrate our statements we are using some prototypical model systems, which are listed below:

1.1 Auto-Regressive Process of 1st Order

$$\displaystyle{ x_{i} = 0.95x_{i-1} + 0.05x_{i-2} + 0.9\xi \quad \text{where }\ \xi \ \mathrm{is\ white\ Gaussian\ noise.}}$$
(1.33)

1.2 Lorenz System [17]

$$\displaystyle\begin{array}{rcl} \dot{x}& =& -\sigma (x - y), \\ \dot{y}& =& -xz + rx - y, \\ \dot{z}& =& xy - bz. {}\end{array}$$
(1.34)

1.3 Rössler System [54]

$$\displaystyle\begin{array}{rcl} \dot{x}& =& -y - z, \\ \dot{y}& =& x + a\,y, \\ \dot{z}& =& b + z\,(x - c).{}\end{array}$$
(1.35)

1.4 Mutually Coupled Rössler Systems

$$\displaystyle\begin{array}{rcl} \dot{x}_{1}& =& -(1+\nu )x_{2} - x_{3} +\mu (y_{1} - x_{1}), \\ \dot{x}_{2}& =& (1+\nu )x_{1} + a\,x_{2}, \\ \dot{x}_{3}& =& b + x_{3}\,(x_{1} - c), {}\end{array}$$
(1.36)
$$\displaystyle\begin{array}{rcl} \dot{y}_{1}& =& -(1-\nu )y_{2} - y_{3} +\mu (x_{1} - y_{1}), \\ \dot{y}_{2}& =& (1-\nu )y_{1} + a\,y_{2}, \\ \dot{y}_{3}& =& b + y_{3}\,(y_{1} - c). {}\end{array}$$
(1.37)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marwan, N., Webber, C.L. (2015). Mathematical and Computational Foundations of Recurrence Quantifications. In: Webber, Jr., C., Marwan, N. (eds) Recurrence Quantification Analysis. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-07155-8_1

Download citation

Publish with us

Policies and ethics