Skip to main content

From Single Image to List of Objects Based on Edge and Blob Detection

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8468))

Included in the following conference series:

Abstract

In this paper we present a new method for obtaining a list of interest objects from a single image. Our object extraction method works on two well known algorithms: the Canny edge detection method and the quadrilaterals detection. Our approach allows to select only the significant elements of the image. In addition, this method allows to filter out unnecessary key points in a simple way (for example obtained by the SIFT algorithm) from the background image. The effectiveness of the method is confirmed by experimental research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barghout, L., Sheynin, J.: Real-world scene perception and perceptual organization: Lessons from computer vision. Journal of Vision 13(9), 709 (2013)

    Article  Google Scholar 

  2. Bartczuk, L., Przybyl, A., Dziwinski, P.: Hybrid state variables - fuzzy logic modelling of nonlinear objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 227–234. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Batenburg, K., Sijbers, J.: Optimal threshold selection for tomogram segmentation by projection distance minimization. IEEE Transactions on Medical Imaging 28(5), 676–686 (2009)

    Article  Google Scholar 

  4. Bazarganigilani, M.: Optimized image feature selection using pairwise classifiers. Journal of Artificial Intelligence and Soft Computing Research 1(2), 147–153 (2011)

    Google Scholar 

  5. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

    Article  Google Scholar 

  6. Chang, Y., Wang, Y., Chen, C., Ricanek, K.: Improved image-based automatic gender classification by feature selection. Journal of Artificial Intelligence and Soft Computing Research 1(3), 241–253 (2011)

    Google Scholar 

  7. Cpalka, K.: A new method for design and reduction of neuro-fuzzy classification systems. IEEE Transactions on Neural Networks 20(4), 701–714 (2009)

    Article  Google Scholar 

  8. Cpalka, K., Rutkowski, L.: Flexible takagi sugeno neuro-fuzzy structures for nonlinear approximation. WSEAS Transactions on Systems 4(9), 1450–1458 (2005)

    Google Scholar 

  9. Damiand, G., Resch, P.: Split-and-merge algorithms defined on topological maps for 3d image segmentation. Graphical Models 65(1), 149–167 (2003)

    Article  MATH  Google Scholar 

  10. Duda, P., Jaworski, M., Pietruczuk, L., Scherer, R., Korytkowski, M., Gabryel, M.: On the application of fourier series density estimation for image classification based on feature description. In: Proceedings of the 8th International Conference on Knowledge, Information and Creativity Support Systems, Krakow, Poland, November 7-9, pp. 81–91 (2013)

    Google Scholar 

  11. Gabryel, M., Korytkowski, M., Scherer, R., Rutkowski, L.: Object detection by simple fuzzy classifiers generated by boosting. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS, vol. 7894, pp. 540–547. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Gabryel, M., Nowicki, R.K., Woźniak, M., Kempa, W.M.: Genetic cost optimization of the GI/M/1/N finite-buffer queue with a single vacation policy. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 12–23. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Gabryel, M., Woźniak, M., Nowicki, R.K.: Creating learning sets for control systems using an evolutionary method. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) SIDE 2012 and EC 2012. LNCS, vol. 7269, pp. 206–213. Springer, Heidelberg (2012)

    Google Scholar 

  14. Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-varying regression. Annals of the Institute of Statistical Mathematics 35(1), 215–228 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R.: Content-based image indexing by data clustering and inverse document frequency. In: Mrozek, S.K.D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 374–383. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  16. Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Romanowski, J.: Improved digital image segmentation based on stereo vision and mean shift algorithm. In: Parallel Processing and Applied Mathematics 2013. LNCS. Springer, Heidelberg (2014) (manuscript accepted for publication)

    Google Scholar 

  17. Kirillov, A.: Detecting some simple shapes in images (2010), http://www.aforgenet.com

  18. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  19. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  20. Nowicki, R.: Rough-neuro-fuzzy system with micog defuzzification. In: 2006 IEEE International Conference on Fuzzy Systems, pp. 1958–1965 (2006)

    Google Scholar 

  21. Nowicki, R.: On classification with missing data using rough-neuro-fuzzy systems. International Journal of Applied Mathematics and Computer Science 20(1), 55–67 (2010)

    Article  Google Scholar 

  22. Nowicki, R., Rutkowski, L.: Soft techniques for bayesian classification. In: Neural Networks and Soft Computing, pp. 537–544. Springer (2003)

    Google Scholar 

  23. Peteiro-Barral, D., Guijarro-Bardinas, B., Perez-Sanchez, B.: Learning from heterogeneously distributed data sets using artificial neural networks and genetic algorithms. Journal of Artificial Intelligence and Soft Computing Research 2(1), 5–20 (2012)

    Google Scholar 

  24. Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Rutkowski, L.: A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification. IEEE Transactions on Circuits and Systems 33(8), 812–818 (1986)

    Article  MATH  Google Scholar 

  26. Rutkowski, L.: Non-parametric learning algorithms in time-varying environments. Signal Processing 18(2), 129–137 (1989)

    Article  MathSciNet  Google Scholar 

  27. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Sankaranarayanan, V., Lakshmi, S.: A study of edge detection techniques for segmentation computing approaches. IJCA, Special Issue on CASCT (1), 35–41 (2010)

    Google Scholar 

  29. Starczewski, J.T.: A type-1 approximation of interval type-2 FLS. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS, vol. 5571, pp. 287–294. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Stockman, G., Shapiro, L.G.: Computer Vision, 1st edn. Prentice Hall PTR, Upper Saddle River (2001)

    Google Scholar 

  31. Tamaki, T., Yamamura, T., Ohnishi, N.: Image segmentation and object extraction based on geometric features of regions. In: Electronic Imaging 1999. International Society for Optics and Photonics, pp. 937–945 (1998)

    Google Scholar 

  32. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 362–367. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Grycuk, R., Gabryel, M., Korytkowski, M., Scherer, R., Voloshynovskiy, S. (2014). From Single Image to List of Objects Based on Edge and Blob Detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8468. Springer, Cham. https://doi.org/10.1007/978-3-319-07176-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07176-3_53

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07175-6

  • Online ISBN: 978-3-319-07176-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics