Skip to main content

A General Saltus LLTM-R for Cognitive Assessments

  • Conference paper
Book cover Quantitative Psychology Research

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 89))

Abstract

The purpose of this paper is to propose a general saltus LLTM-R for cognitive assessments. The proposed model is an extension of the Rasch model that combines a linear logistic latent trait with an error term (LLTM-R), a multidimensional Rasch model, and the saltus model, a parsimonious, structured mixture Rasch model. The general saltus LLTM-R can be used to (1) estimate parameters that describe test items by substantive theories, (2) evaluate the latent constructs that are associated with the knowledge structures of the test items, and (3) test hypotheses on qualitative differences between the sub-populations of subjects with different problem solving strategies, cognitive processes, or developmental stages. Bayesian estimation of the proposed model is described with an application to a test of deductive reasoning in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RJ, Wilson M, Wu M (1997) Multilevel item response models: an approach to errors in variable regression. J Educ Behav Stat 22:47–76

    Article  Google Scholar 

  • Bates D, Maechler M (2009) lme4: linear mixed-effects models using S4 classes, R package version 0.999375-31. http://cran.rproject.org/package=lme4

  • Bolt DM, Cohen AS, Wollack JA (2001) A mixture item response for multiple choice data. J Educ Behav Stat 26:381–409

    Article  Google Scholar 

  • Briggs DC, Wilson C (2003) An introduction to multidimensional measurement using Rasch models. J Appl Meas 4:87–100

    Google Scholar 

  • Byrnes JP, Overton WF (1986) Reasoning about certainty and uncertainty in concrete, causal, and propositional context. Dev Psychol 22:793–799

    Article  Google Scholar 

  • Cho S-J, Cohen AS (2010) A multilevel mixture IRT model with an application to DIF. J Educ Behav Stat 35:336–370

    Article  Google Scholar 

  • Cho S-J, Cohen A, Kim S-H, Bottge B (2010) Latent transition analysis with a mixture IRT measurement model. Appl Psychol Meas 34:583–604

    Article  Google Scholar 

  • Cho S-J, Cohen AS, Kim S-H (2013) Markov chain Monte Carlo estimation of a mixture item response theory model. J Stat Comput Simul 83:278–306

    Article  MATH  MathSciNet  Google Scholar 

  • Cho S-J, Cohen AS, Kim S-H (2014) A mixture group bi-factor model for binary responses. Struct Equ Modeling 21:375–395

    Article  MathSciNet  Google Scholar 

  • De Jong MG, Steenkamp J-BEM (2010) Finite mixture multilevel multidimensional ordinal IRT models for large scale cross-cultural research. Psychometrika 75:3–32

    Article  MATH  MathSciNet  Google Scholar 

  • Diebolt J, Robert CP (1994) Estimation of finite distributions through Bayesian sampling. J R Stat Soc Series B 56:363–375

    MATH  MathSciNet  Google Scholar 

  • Draney K (2007) The saltus model applied to proportional reasoning data. J Appl Meas 8:438–455

    Google Scholar 

  • Draney K, Wilson M, Gluck J, Spiel C (2007) Mixture models in a developmental context. In: Hancock R, Samuelson KM (eds) Latent variable mixture models. Information Age, Charlotte, pp 199–216

    Google Scholar 

  • Embretson SE (1984) A general multicomponent latent trait model for response processes. Psychometrika 49:175–186

    Article  Google Scholar 

  • Evans JSBT, Newstead SE, Byrne RMJ (1993) Human reasoning: the psychology of deduction. Erlbaum, Mahwah

    Google Scholar 

  • Fieuws S, Spiessens B, Draney K (2004) Mixture models. In: Boeck D, Wilson M (eds) Explanatory item response models: a generalized linear and nonlinear approach. Springer, New York, pp 317–340

    Chapter  Google Scholar 

  • Fischer GH (1973) Linear logistic test model as an instrument in educational research. Acta Psychol 37:359–374

    Article  Google Scholar 

  • Fischer GH, Forman AK (1982) Some applications of logistic latent trait models with linear constraints on the parameters. Appl Psychol Meas 6:397–416

    Article  Google Scholar 

  • Gelman A, Rubin DB (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In: Bernardo JM, Berger JO, Dawiv AP, Smith AFM (eds) Bayesian statistics. Clarendon Press, Oxford, pp 169–193

    Google Scholar 

  • Janssen R, Schepers J, Peres D (2004) Models with item and item group predictors. In: Boeck PD, Wilson M (eds) Explanatory item response models. Springer, New York, pp 198–212

    Google Scholar 

  • Janveau-Brennan G, Markovits H (1999) The development of reasoning with causal conditionals. Dev Psychol 35:904–911

    Article  Google Scholar 

  • Kelderman H, Rijkes CPM (1994) Loglinear multidimensional IRT models for polytomously scored items. Psychometrika 59:149–176

    Article  MATH  Google Scholar 

  • Lenk PJ, DeSarbo WS (2000) Bayesian inference for finite mixtures of generalized linear models with random effects. Psychometrika 65:93–119

    Article  MATH  Google Scholar 

  • Lunn D, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Markovits H, Fleury M-L, Quinn S, Venet M (1998) The development of conditional reasoning and the structure of semantic memory. Child Dev 69:742–755

    Article  Google Scholar 

  • Mislevy RJ, Verhelst N (1990) Modeling item responses when different subjects employ different solution strategies. Psychometrika 55:195–215

    Article  Google Scholar 

  • Mislevy RJ, Wilson M (1996) Marginal maximum likelihood estimation for a psychometric model of discontinuous development. Psychometrika 41–71:61

    Google Scholar 

  • Muthén L, Muthén B (2008) Mplus user’s guide. Muthen & Muthen, Angeles

    Google Scholar 

  • Overton WF (1985) Scientific methodologies and the competence- moderator performance issue. In: Neimark ED, de Lisi R, Newman JL (eds) Moderators of competence. Erlbaum, Hillsdale, pp 15–41

    Google Scholar 

  • Piaget J (1971) Biology and knowledge. University of Chicago Press, Chicago

    Google Scholar 

  • Rijmen F, De Boeck P (2002) The random weights linear logistic test model. Appl Psychol Meas 26:271–285

    Article  MathSciNet  Google Scholar 

  • Rijmen F, De Boeck P (2005) A relation between a between-item multidimensional IRT model and the mixture Rasch model. Psychometrika 70:481–496

    Article  MATH  MathSciNet  Google Scholar 

  • Roberge JJ, Mason EJ (1978) Effects of negation on adolescents’ class and conditional reasoning abilities. J Gen Psychol 98:187–195

    Article  Google Scholar 

  • Robert CP (1996) Mixtures of distributions: inference and estimation. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov Chain Monte Carlo in practice. Chapman & Hall, Washington, pp 441–464

    Google Scholar 

  • Rost J (1990) Rasch models in latent classes: an integration of two approaches to item analysis. Appl Psychol Meas/ 14:271–282

    Article  Google Scholar 

  • Spiel C, Gluck J (2008) A model based test of competence profile and competence level in deductive reasoning. In Hartig J, Klieme E, Leutner D (eds) Assessment of competencies in educational contexts: state of the art and future prospects. Hogrefe, Gottingen, pp 41–60

    Google Scholar 

  • Spiel C, Gluck J, Gossler H (2001) Stability and change of unidimensionality: the sample case of deductive reasoning. J Adolesc Res 16:150–168

    Article  Google Scholar 

  • StataCorp (2009) Stata statistical software: release 11. StataCorp LP, College Station

    Google Scholar 

  • Stephens M (2000) Dealing with label switching in mixture models. J R Stat Soc Series B 62:795–809

    Article  MATH  MathSciNet  Google Scholar 

  • Vermunt J, Magidson J (2005) Latent GOLD 4.0 [Computer program]. Statistical Innovations, Belmont

    Google Scholar 

  • von Davier M (2001) WINMIRA [Computer program]. Assessment Systems Corporation, St. Paul

    Google Scholar 

  • von Davier M, Xu X, Carstensen CH (2011) Measuring growth in a longitudinal large-scale assessment with a general latent variable model. Psychometrika 76:318–336

    Article  MATH  MathSciNet  Google Scholar 

  • Wilson MR (1989) Saltus: a psychometric model of discontinuity in cognitive development. Psychol Bull 105:276–289

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Wen-Chung Wang for his helpful comments and suggestions to our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjeong Jeon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jeon, M., Draney, K., Wilson, M. (2015). A General Saltus LLTM-R for Cognitive Assessments. In: Millsap, R., Bolt, D., van der Ark, L., Wang, WC. (eds) Quantitative Psychology Research. Springer Proceedings in Mathematics & Statistics, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-07503-7_5

Download citation

Publish with us

Policies and ethics