Skip to main content

Magnetocaloric Materials for Freezing, Cooling, and Heat-Pump Applications

  • Chapter
  • First Online:
Magnetocaloric Energy Conversion

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Magnetocaloric materials (MCM) are the ‘heart’ of every magnetic refrigeration or heat-pump application. Apart from having a crucial role in the heat-regeneration process, they also exhibit a special and vital phenomenon for magnetic refrigeration called the magnetocaloric effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss P, Piccard A (1917) Le phénoméne magnétocalorique. J Phys (Paris) 7:103–109

    Google Scholar 

  2. Weiss P, Piccard A (1918) Sur un nouveau phénoméne magnétocalorique. Comptes Rendus 166:352–354

    Google Scholar 

  3. Warburg E (1881) Magnetische Untersuchungen. Ueber einige Wirkungen der Coërcitivkraft. Ann Phys (Leipzig) 249:141–164

    Article  Google Scholar 

  4. Smith A (2013) Who discovered the magnetocaloric effect? Warburg, Weiss and the connection between magnetism and heat. Eur Phys J H 38(4):507–517

    Article  Google Scholar 

  5. Joule J (1843) On the calorific effects of magneto-electricity, and on the mechanical value of heat. Philos Mag 23:263–276

    Google Scholar 

  6. Nichol JP (ed) (1860) Cyclopedia of the physical sciences. Richard Green and Company, London

    Google Scholar 

  7. Ewing JA (1882) On effects of retentiveness in the magnetisation of iron and steel. Proc Roy Soc 24:39–45

    Article  Google Scholar 

  8. Stefan J (1871) Ueber die Gesetze der electrodynamischen Induction. Wien Ber 64:193–224

    Google Scholar 

  9. Stefan J (1889) Ueber thermomagnetische Motoren. Ann Phys 274:427–440

    Article  Google Scholar 

  10. Edison T (1888) Pyromagnetic motor. US Patent 380.100

    Google Scholar 

  11. Edison T (1892) Pyromagnetic generator. US Patent 476.983 A

    Google Scholar 

  12. Tesla N (1889) Thermo-magnetic motor. US Patent 396.121 A

    Google Scholar 

  13. Tesla N (1890) Pyromagneto-electric generator. US Patent 428.057 A

    Google Scholar 

  14. Debye P (1926) Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur. Ann Phys (Leipzig) 386:1154–1160

    Article  Google Scholar 

  15. Giauque WF (1927) A thermodynamic treatment of certain magnetic effects. A proposed method of producing temperatures considerably below 1 absolute. J Am Chem Soc 49:1864–1870

    Article  Google Scholar 

  16. Giauque WF, MacDougall DP (1933) Attainment of temperatures below 1 absolute by demagnetization of Gd2(SO4)3·H2O. Phys Rev 43:768

    Article  Google Scholar 

  17. Urbain G, Weiss P, Trombe F (1935) Un nouveau métal ferromagnétique, le gadolinium. Comptes Rendus 200:2132–2134

    Google Scholar 

  18. Marsh J (1963) MSc. Disertation, West Virginia University

    Google Scholar 

  19. Silars MP (1965) MSc. Disertation, West Virginia University

    Google Scholar 

  20. Brown GV (1976) Magnetic heat pumping near room temperature. J Appl Phys 47:3673–3680

    Article  Google Scholar 

  21. Barclay JA, Steyert WA (1982) Active magnetic regenerator. US Patent 4.332.135 A

    Google Scholar 

  22. Pecharsky VK, Gschneidner KA Jr (1997) Giant magnetocaloric effect in Gd5(Si2 Ge2). Phys Rev Lett 78:4494–4497

    Article  Google Scholar 

  23. Gschneidner KA Jr, Pecharsky VK, Tsokol AO (2005) Recent developments in magnetocaloric materials. Rep Prog Phys 68:1479–1539

    Article  Google Scholar 

  24. Shen BG, Sun JR, Hu FX et al (2009) Recent progress in exploring magnetocaloric materials. Adv Mater 21:4545–4564

    Article  Google Scholar 

  25. Brück E, Tegus O, Cam Thanh DT et al (2008) A review on Mn based materials for magnetic refrigeration: structure and properties. Int J Refrig 31:763–770

    Article  Google Scholar 

  26. Phan MH, Yu SC (2007) Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater 308:325–340

    Article  Google Scholar 

  27. Gutfleisch O, Willard MA, Brück E et al (2010) Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv Mater 23(7):821–842

    Article  Google Scholar 

  28. Sandeman KG (2012) Magnetocaloric materials: the search for new systems. Scripta Mater 67(6):566–571

    Article  Google Scholar 

  29. Tishin AM, Spichkin YI (2003) The magnetocaloric effect and its applications. Institute of Physics Publishing, Philadelphia

    Book  Google Scholar 

  30. Smith A, Bahl CRH, Bjørk R et al (2012) Materials challenges for high performance magnetocaloric refrigeration devices. Adv Energy Mater 2:1288–1318

    Article  Google Scholar 

  31. Yu B, Gao Q, Zhang B et al (2003) Review on research of room temperature magnetic refrigeration. Int J Refrig 26:622–636

    Article  Google Scholar 

  32. Engelbrecht K, Bahl CRH (2010) Evaluating the effect of magnetocaloric properties on magnetic refrigeration performance. J Appl Phys 108:123918

    Article  Google Scholar 

  33. Basso V, Sasso CP, Bertotti G et al (2006) Effect of material hysteresis in magnetic refrigeration cycles. Int J Refrig 29:1358–1365

    Article  Google Scholar 

  34. Engelbrecht K, Nielsen KK, Bahl CRH et al (2013) Material properties and modeling characteristics for MnFeP1−xAsx materials for application in magnetic refrigeration. J Appl Phys 113(17):173510

    Article  Google Scholar 

  35. von Moos L, Nielsen KK, Engelbrecht K et al (2014) Experimental investigation of the effect of thermal hysteresis in first order material MnFe(P, As) applied in an AMR device. Int J Refrig 37(1):303–306

    Article  Google Scholar 

  36. Nielsen KK, Engelbrecht K (2012) The influence of the solid thermal conductivity on active magnetic regenerators. J Phys D Appl Phys 45:145001

    Article  Google Scholar 

  37. Fiorillo F (2004) Measurement and characterization of magnetic materials. Elsevier Academic Press, Amsterdam

    Google Scholar 

  38. Bjørk R, Bahl CRH, Katter M (2010) Magnetocaloric properties of LaFe13-x-yCoxSiy and commercial grade Gd. J Magn Magn Mater 322:3882–3888

    Article  Google Scholar 

  39. Dan’kov SY, Tishin AM (1998) Magnetic phase transition and the magnetothermal properties of gadolinium. Phys Rev B 57(6):3478

    Article  Google Scholar 

  40. Jayaraman TV, Boone L, Shield JE (2011) Near room temperature magnetic entropy changes in as-cast Gd100-xMnx (x = 0, 5, 10, 15, and 20 at.%) alloys. J Alloy Compd 509:1411–1417

    Article  Google Scholar 

  41. Jayaraman TV, Boone L, Shield JE (2013) Magnetocaloric effect and refrigerant capacity in melt-spun Gd-Mn alloys. J Magn Magn Mater 345:153–158

    Article  Google Scholar 

  42. Pecharsky VK, Gschneidner KA Jr (1999) Magnetocaloric effect and magnetic refrigeration. J Magn Magn Mater 200:44–56

    Article  Google Scholar 

  43. Kaštil J, Javorský P, Kamarád J (2011) Magnetocaloric effect of Gd-Tb alloys: influence of the sample shape anisotropy. Appl Phys A 104:205–209

    Article  Google Scholar 

  44. Couillaud S, Gaudin E, Franco V et al (2011) The magnetocaloric properties of GdScSi and GdScGe. Intermetallics 19:1573–1578

    Article  Google Scholar 

  45. Law JY, Ramanujan RV, Franco V (2010) Tunable Curie temperatures in Gd alloyed Fe-B-Cr magnetocaloric materials. J Alloy Compd 508:14–19

    Article  Google Scholar 

  46. Hu F, Shen B, Sun J et al (2001) Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFeSi. Appl Phys Lett 78:3675–3677

    Article  Google Scholar 

  47. Fujita A, Fujieda S, Fukamichi K (2003) Isotropic giant linear magnetostriction and large magnetocaloric effects in La(FexSi1-x)13 intinerant-electron metamagnetic compounds and their hydrides. Metal Mater Proc 15:273

    Google Scholar 

  48. Fujita A, Fujieda S, Hasegawa Y et al (2003) Intinerant-electron transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides. Phys Rev B 67:104416

    Article  Google Scholar 

  49. Katter M, Zellmann V, Reppel GW et al (2008) Magnetocaloric properties of La(Fe Co, Si)13 bulk material prepared by powder metallurgy. IEEE Trans Magn 44:3044–3047

    Article  Google Scholar 

  50. Hansen BR, Katter M, Kuhn LT et al (2009) Characterization study of a plate of the magnetocaloric material La(Fe,Co,Si)13. Paper presented at the 3rd international conference of IIR on magnetic refrigeration at room temperature, Des Moines, Iowa, USA, 11–15 May 2009, pp 67–73

    Google Scholar 

  51. Barcza A, Katter M, Zellmann V et al (2011) Stability and magnetocaloric properties of sintered La(Fe, Mn, Si)13Hz alloys. IEEE Trans Magn 47:3391–3394

    Article  Google Scholar 

  52. Wada H, Tanabe Y (2001) Giant magnetocaloric effect of MnAs1-xSbx. Appl Phys Lett 79:3302

    Article  Google Scholar 

  53. Tegus O, Brück E, Buschow KHJ et al (2002) Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 415:150–152

    Article  Google Scholar 

  54. Brück E, Tegus O, Li XW et al (2003) Magnetic refrigeration–towards room-temperature applications. Phys B 327:431–437

    Article  Google Scholar 

  55. Brück E, Ilyn M, Tishin AM et al (2005) Magnetocaloric effects in MnFeP1-xAsx–based compounds. J Magn Magn Mater 290–291:8–13

    Article  Google Scholar 

  56. Dung NH, Zhang L, Ou ZQ et al (2011) From first-order magneto-elastic to magneto-structural transition in (Mn, Fe)1.95P0.50Si0.50 compounds. Appl Phys Lett 99:092511

    Article  Google Scholar 

  57. Songlin D, Tegus O, Fuquan B et al (2005) Magnetic entropy change in Mn0.9Fe1.1P1-xGex compounds. IEEE Trans Magn 41(10):2778–2780

    Article  Google Scholar 

  58. Cam Thanh DT, Brück E, Tegus O et al (2006) Magnetocaloric effect in MnFe(P, Si, Ge) compounds. J Appl Phys 99:08Q107

    Article  Google Scholar 

  59. Dinesen AR, Linderoth S, Mørup S (2005) Direct and indirect measurements of the magnetocaloric effect in La0.67Ca0.33-xSrxMnO3±δ (x ∈ [0;0.33]). J Phys Condens Matter 17:6257–6269

    Article  Google Scholar 

  60. Barcza A, Zellmann V, Katter M (2012) Linearly, continuously graded transition temperatures in La-Fe-Co-Si parts for magnetic cooling applications. Paper presented at the 5th international conference of IIR on magnetic refrigeration at room temperature, Grenoble, France, 17–20 Sept 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kitanovski, A., Tušek, J., Tomc, U., Plaznik, U., Ožbolt, M., Poredoš, A. (2015). Magnetocaloric Materials for Freezing, Cooling, and Heat-Pump Applications. In: Magnetocaloric Energy Conversion. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-08741-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08741-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08740-5

  • Online ISBN: 978-3-319-08741-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics