Skip to main content

Cable Function Analysis for the Musculoskeletal Static Workspace of a Human Shoulder

  • Conference paper
  • First Online:

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 32))

Abstract

The study of cable function allows the contribution of particular cables towards the generation of motion to be determined for cable-driven parallel manipulators (CDPMs). This study is fundamental in the understanding of the arrangement of cables for CDPMs and can be used within the design of optimal cable arrangements. In this paper, the analysis of cable function for the musculoskeletal static workspace of a human shoulder is performed. Considering the muscles within the shoulder as state dependent force generators, the set of muscles required in sustaining the gravity force is determined for each workspace pose. As a result, the set of poses that each muscle is responsible for (muscle function) can be computationally determined. By comparing the results to the muscle function from biomechanics studies, it is shown that the results from the proposed cable function analysis are consistent with that reported in the literature of human studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albus JS, Bostelman RV, Dagalakis N (1993) The NIST robocrane. J Robot Syst 10(5):709–724

    Article  Google Scholar 

  2. Williams RL II, Albus JS, Bostelman RV (2004) 3D cable-based cartesian metrology system. J Robot Syst 21(5):237–257

    Article  Google Scholar 

  3. Lau D, Bhalerao K, Oetomo D, Halgamuge SK (2012) On the task specific evaluation and optimisation of cable-driven manipulators. In: Dai JS, Zoppi M, Kong X (eds) Advances in reconfigurable mechanisms and robots, vol I, chapter 63. Springer, London, pp 707–716

    Google Scholar 

  4. Lau D, Oetomo D, Halgamuge SK (2013) Generalized modeling of multilink cable-driven manipulators with arbitrary routing using the cable-routing matrix. IEEE Trans Robot 29(5):1102–1113

    Article  Google Scholar 

  5. Kozuki T, Mizoguchi H, Asano Y, Osada M, Shirai T, Urata J, Nakanishi Y, Okada K, Inaba M (2012) Design methodology for thorax and shoulder of human mimetic musculoskeletal humanoid kenshiro: a thorax with rib like surface. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 3687–3692

    Google Scholar 

  6. Wittmeier S, Alessandro C, Bascarevic N, Dalamagkidis K, Devereux D, Diamond A, Jäntsch M, Jovanovic K, Knight R, Marques HG, Milosavljevic P, Mitra B, Svetozarevic B, Potkonjak V, Pfeifer R, Knoll A, Holland O (2013) Toward anthropomimetic robotics: development, simulation, and control of a musculoskeletal torso. J Artif Life 19(1):171–193

    Article  Google Scholar 

  7. Bouchard S, Gosselin C, Moore B (2010) On the ability of a cable-driven robot to generate a prescribed set of wrenches. J Mech Robot 2(1):011 010/1–10

    Google Scholar 

  8. Lim WB, Yang G, Yeo SH, Mustafa SK (2011) A generic force-closure analysis algorithm for cable-driven parallel manipulators. Mech Mach Theory 46(9):1265–1275

    Article  Google Scholar 

  9. Lau D, Oetomo D, Halgamuge SK (2011) Wrench-closure workspace generation for cable driven parallel manipulators using a hybrid analytical-numerical approach. J Mech Des 133(7):071 004/1–7

    Google Scholar 

  10. Gouttefarde M, Daney D, Merlet J-P (2011) Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots. IEEE Trans Robot 27(1):1–13

    Article  Google Scholar 

  11. Lau D, Eden J, Oetomo D, Halgamuge SK (2014) Musculoskeletal static workspace of the human shoulder as a cable-driven robot. IEEE/ASME Trans Mechatron 99:1–6

    Article  Google Scholar 

  12. Tang X, Tang L, Wang J, Sun D (2013) Workspace quality analysis and application for a completely restrained 3-DOF planar cable-driven parallel manipulator. J Mech Sci Technol 27(8):2391–2399

    Article  Google Scholar 

  13. Sasaki K, Neptune RR (2006) Differences in muscle function during walking and running at the same speed. J Biomech 39(11):2005–2013

    Article  Google Scholar 

  14. Ringelberg JA (1985) EMG and force production of some human shoulder muscles during isometric abduction. J Biomech 18(12):939–947

    Article  Google Scholar 

  15. Kronberg M, Brostrom L-A (1995) Electromyographic recordings in shoulder muscles during eccentric movements. Clin Orthop Relat R 314:143–151

    Google Scholar 

  16. Escamilla RF, Yamashiro K, Paulos L, Andrews JR (2009) Shoulder muscle activity and function in common shoulder rehabilitation exercises. Sports Med 39(8):663–685

    Article  Google Scholar 

  17. Palastanga N, Field D, Soames RW (2006) Anatomy and human movement: structure and function, 5th edn. Butterworth-Heinemann Elsevier, Edinburgh

    Google Scholar 

  18. Gerling ME, Brown SH (2013) Architectural analysis and predicted functional capability of the human latissimus dorsi muscle. J Anat 223(2):112–122

    Article  Google Scholar 

  19. Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359–411

    Google Scholar 

  20. Martin CF, Schovanec L (1999) The control and mechanics of human movement systems. Prog Syst Control Theory 25:173–202

    MathSciNet  Google Scholar 

  21. Vilimek M (2007) Musculotendon forces derived by different muscle models. Acta Bioeng Biomech 9(2):41–47

    Google Scholar 

  22. Holzbaur KRS, Murray WM, Delp SL (2005) A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng 33(6):829–840

    Article  Google Scholar 

  23. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelman E, Thelen DG (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54(11):1940–1950

    Article  Google Scholar 

  24. Yu J, Ackland DC, Pandy MG (2011) Shoulder muscle function depends on elbow joint position: an illustration of dynamic coupling in the upper limb. J Biomech 44(10):1859–1868

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darwin Lau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lau, D., Eden, J., Halgamuge, S.K., Oetomo, D. (2015). Cable Function Analysis for the Musculoskeletal Static Workspace of a Human Shoulder. In: Pott, A., Bruckmann, T. (eds) Cable-Driven Parallel Robots. Mechanisms and Machine Science, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-319-09489-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09489-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09488-5

  • Online ISBN: 978-3-319-09489-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics