Skip to main content

Recent Advances on 2D and 3D Change Detection in Urban Environments from Remote Sensing Data

  • Chapter
  • First Online:
Computational Approaches for Urban Environments

Part of the book series: Geotechnologies and the Environment ((GEOTECH,volume 13))

Abstract

Urban environments are dynamic and complex by nature, evolve over time, and constitute the key elements for currently emerging environmental and engineering applications in global, regional, and local spatial scales. Their modeling and monitoring is a mature research field that has been extensively studied from the remote sensing, computer vision, and geography scientific communities. In this chapter, a comprehensive survey of the recent advances in 2D and 3D change detection and modeling is presented. The analysis is structured around the main change detection components including the properties of the change detection targets and end products; the characteristics of the remote sensing data; the initial radiometric, atmospheric, and geometric corrections; the core unsupervised and supervised methodologies and the urban object extraction and reconstruction algorithms. Experimental results from the application of unsupervised and supervised methods for change detection and building detection are given along with their qualitative and quantitative evaluation. Based on the current status and state of the art, the validation reports of relevant studies, and the special challenges of each detection component separately, the present study highlights certain issues and insights that may be applicable for future research and development, including (i) the need for novel multimodal computational frameworks and (ii) for efficient unsupervised techniques able to identify “from-to” change trajectories, along with the importance (iii) of automation, (iv) of open data policies, and (v) of innovative basic research in the core of the change detection mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Kawy OR, Rød JK, Ismail HA, Suliman AS (2011) Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Appl Geogr 31(2):483–494, ISSN 0143-6228. http://dx.doi.org/10.1016/j.apgeog.2010.10.012. Keywords: Change detection, Land use, Land cover, Post-classification comparison, Western Nile delta

  • Ahmad F, Amin MG (2013) Through-the-wall human motion indication using sparsity-driven change detection. IEEE Trans Geosci Remote Sens 51(2):881–890. doi:10.1109/TGRS.2012.2203310

    Article  Google Scholar 

  • Aiazzi B, Alparone L, Baronti S, Garzelli A, Zoppetti C (2013) Nonparametric change detection in multitemporal SAR images based on mean-shift clustering. IEEE Trans Geosci Remote Sens 51(4):2022–2031. doi:10.1109/TGRS.2013.2238946

    Article  Google Scholar 

  • Bagan H, Yamagata Y (2012) Landsat analysis of urban growth: how Tokyo became the world’s largest megacity during the last 40 years. Remote Sens Environ 127:210–222, ISSN 0034–4257. http://dx.doi.org/10.1016/j.rse.2012.09.011

  • Bazi Y, Melgani F, Al-Sharari HD (2010) Unsupervised change detection in multispectral remotely sensed imagery with level set methods. IEEE Trans Geosci Remote Sens 48(8):3178–3187

    Article  Google Scholar 

  • Benedek C, Descombes X, Zerubia J (2010) Building detection in a single remotely sensed image with a point process of rectangles. In: 20th international conference on Pattern Recognition (ICPR), 23–26 Aug 2010, pp 1417–1420. doi:E10.1109/ICPR.2010.350

  • Benedek C, Descombes X, Zerubia J (2012) Building development monitoring in multitemporal remotely sensed image pairs with stochastic birth-death dynamics. IEEE Trans Pattern Anal Mach Intell 34(1):33–50. doi:10.1109/TPAMI.2011.94

    Article  Google Scholar 

  • Berberoglu S, Akin A (2009) Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean. Int J Appl Earth Obs Geoinf 11(1):46–53, ISSN 0303-2434. http://dx.doi.org/10.1016/j.jag.2008.06.002

  • Berger C, Voltersen M, Eckardt R, Eberle J, Heyer T, Salepci N, Hese S, Schmullius C, Tao J, Auer S, Bamler R, Ewald K, Gartley M, Jacobson J, Buswell A, Du Q, Pacifici F (2013) Multi-modal and multi-temporal data fusion: outcome of the 2012 GRSS data fusion contest. IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1324–1340. doi:10.1109/JSTARS.2013.2245860

    Article  Google Scholar 

  • Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65(1):2–16

    Article  Google Scholar 

  • Boehm H-DV, Liesenberg V, Limin SH (2013) Multi-temporal airborne LiDAR-survey and field measurements of tropical peat swamp forest to monitor changes. IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1524–1530. doi:10.1109/JSTARS.2013.2258895

    Article  Google Scholar 

  • Boulila W, Farah IR, Saheb Ettabaa K, Solaiman B, Ben Ghézala H (2011) A data mining based approach to predict spatiotemporal changes in satellite images. Int J Appl Earth Obs Geoinf 13(3):386–395, ISSN 0303-2434. http://dx.doi.org/10.1016/j.jag.2011.01.008

  • Bouziani M, Goïta K, He D-C (2010) Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge. ISPRS J Photogramm Remote Sens 65(1):143–153, ISSN 0924-2716. http://dx.doi.org/10.1016/j.isprsjprs.2009.10.002

  • Bovolo F, Bruzzone L, Marconcini M (2008) A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure. IEEE Trans Geosci Remote Sens 46(7):2070–2082

    Article  Google Scholar 

  • Bovolo F, Bruzzone L, Marchesi S (2009) Analysis and adaptive estimation of the registration noise distribution in multitemporal VHR images. IEEE Trans Geosci Remote Sens 47(8):2658–2671

    Article  Google Scholar 

  • Bovolo F, Camps-Valls G, Bruzzone L (2010) A support vector domain method for change detection in multitemporal images. Pattern Recognit Lett 31(10):1148–1154

    Article  Google Scholar 

  • Bovolo F, Marchesi S, Bruzzone L (2012) A framework for automatic and unsupervised detection of multiple changes in multitemporal images. IEEE Trans Geosci Remote Sens 50(6):2196–2212. doi:10.1109/TGRS.2011.2171493

    Article  Google Scholar 

  • Bovolo F, Marin C, Bruzzone L (2013) A hierarchical approach to change detection in very high resolution SAR images for surveillance applications. IEEE Trans Geosci Remote Sens 51(4):2042–2054. doi:10.1109/TGRS.2012.2223219

    Article  Google Scholar 

  • Brunner D, Lemoine G, Bruzzone L (2010) Earthquake damage assessment of buildings using VHR optical and SAR imagery. IEEE Trans Geosci Remote Sens 48(5):2403–2420. doi:10.1109/TGRS.2009.2038274

    Article  Google Scholar 

  • Bruzzone L, Bovolo F (2013) A novel framework for the design of change-detection systems for very-high-resolution remote sensing images. Proc IEEE 101(3):609–630. doi:10.1109/JPROC.2012.2197169

    Article  Google Scholar 

  • Camps-Valls G, Gómez-Chova L, Muñoz-Marí J, Rojo-Álvarez JL, Martínez-Ramón M (2008) Kernel-based framework for multi-temporal and multi-source remote sensing data classification and change detection. IEEE Trans Geosci Remote Sens 46(6):1822–1835

    Article  Google Scholar 

  • Canty MJ, Nielsen AA (2008) Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sens Environ 112:1025–1036

    Article  Google Scholar 

  • Celik T (2009) Unsupervised change detection in satellite images using principal component analysis and k -means clustering. IEEE Geosci Remote Sens Lett 6(4):772–776

    Article  Google Scholar 

  • Celik T (2010) A Bayesian approach to unsupervised multiscale change detection in synthetic aperture radar images. Signal Process 90(5):1471–1485, ISSN 0165-1684. http://dx.doi.org/10.1016/j.sigpro.2009.10.018

  • Celik T, Ma K-K (2010) Unsupervised change detection for satellite images using dual-tree complex wavelet transform. IEEE Trans Geosci Remote Sens 48(3):1199–1210. doi:10.1109/TGRS.2009.2029095

    Article  Google Scholar 

  • Celik T, Ma K-K (2011) Multitemporal image change detection using undecimated discrete wavelet transform and active contours. IEEE Trans Geosci Remote Sens 49(2):706–716. doi:10.1109/TGRS.2010.2066979

    Article  Google Scholar 

  • Champion N, Boldo D, Pierrot-Deseilligny M, Stamon G (2010) 2D building change detection from high resolution satellite imagery: a two-step hierarchical method based on 3D invariant primitives. Pattern Recognit Lett 31(10):1138–1147, ISSN 0167-8655. http://dx.doi.org/10.1016/j.patrec.2009.10.012

  • Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893

    Article  Google Scholar 

  • Chatelain F, Tourneret J-Y, Inglada J (2008) Change detection in multisensor SAR images using bivariate gamma distributions. IEEE Trans Image Process 17(3):249–258. doi:10.1109/TIP.2008.916047

    Article  Google Scholar 

  • Chaudhuri D, Kushwaha NK, Samal A (2012) Semi-automated road detection from high resolution satellite images by directional morphological enhancement and segmentation techniques. IEEE J Sel Top Appl Earth Obs Remote Sens 5(5):1538–1544. doi:10.1109/JSTARS.2012.2199085

    Article  Google Scholar 

  • Chen J, Chen X, Cui X, Chen J (2011) Change vector analysis in posterior probability space: a new method for land cover change detection. IEEE Geosci Remote Sens Lett 8(2):317–321

    Article  Google Scholar 

  • Chen X, Chen J, Shi Y, Yamaguchi Y (2012) An automated approach for updating land cover maps based on integrated change detection and classification methods. ISPRS J Photogramm Remote Sens 71:86–95, ISSN 0924-2716. http://dx.doi.org/10.1016/j.isprsjprs.2012.05.006

  • Chen J, Lu M, Chen X, Chen J, Chen L (2013) A spectral gradient difference based approach for land cover change detection. ISPRS J Photogramm Remote Sens 85:1–12, ISSN 0924-2716. http://dx.doi.org/10.1016/j.isprsjprs.2013.07.009

  • Chini M, Pacifici F, Emery WJ, Pierdicca N, Del Frate F (2008) Comparing statistical and neural network methods applied to very high resolution satellite images showing changes in man-made structures at Rocky flats. IEEE Trans Geosci Remote Sens 46(6):1812–1821

    Article  Google Scholar 

  • Craglia M, de Bie K, Jackson D, Pesaresi M, Remetey-Fülöpp G, Wang C, Annoni A, Bian L, Campbell F, Ehlers M, van Genderen J, Goodchild M, Guo H, Lewis A, Simpson R, Skidmore A, Woodgate P (2012) Digital earth 2020: towards the vision for the next decade. Int J Digit Earth 5(1):4–21. doi:10.1080/17538947.2011.638500

    Article  Google Scholar 

  • Crispell D, Mundy J, Taubin G (2012) A variable-resolution probabilistic three-dimensional model for change detection. IEEE Trans Geosci Remote Sens 50(2):489–500

    Article  Google Scholar 

  • Dai X, Khorram S (1998) The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Trans Geosci Remote Sens 36(5):1566–1577

    Article  Google Scholar 

  • Dalla Mura M, Benediktsson JA, Bovolo F, Bruzzone L (2008) An unsupervised technique based on morphological filters for change detection in very high resolution images. IEEE Geosci Remote Sens Lett 5(3):433–437

    Article  Google Scholar 

  • Das S, Mirnalinee TT, Varghese K (2011) Use of salient features for the design of a multistage framework to extract roads from high-resolution multispectral satellite images. IEEE Trans Geosci Remote Sens 49(10):3906–3931. doi:10.1109/TGRS.2011.2136381

    Article  Google Scholar 

  • De Nigris D, Collins DL, Arbel T (2012) Multi-modal image registration based on gradient orientations of minimal uncertainty. IEEE Trans Med Image 31(12):2343–2354

    Article  Google Scholar 

  • Del Frate F, Pacifici F, Solimini D (2008) Monitoring urban land cover in Rome, Italy, and its changes by single-polarization multitemporal SAR images. IEEE J Sel Top Appl Earth Obs Remote Sens 1(2):87–97. doi:10.1109/JSTARS.2008.2002221

    Article  Google Scholar 

  • Demir B, Bovolo F, Bruzzone L (2012) Detection of land-cover transitions in multitemporal remote sensing images with active learning based compound classification. IEEE Trans Geosci Remote Sens 50(5):1930–1941

    Article  Google Scholar 

  • Demir B, Bovolo F, Bruzzone L (2013) Updating land-cover maps by classification of image time series: a novel change-detection-driven transfer learning approach. IEEE Trans Geosci Remote Sens 51:300–312. doi:10.1109/TGRS.2012.2195727

    Article  Google Scholar 

  • Deng JS, Wang K, Deng YH, Qi GJ (2008) PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int J Remote Sens 29:4823–4838. doi:10.1080/01431160801950162

    Article  Google Scholar 

  • Deng JS, Wang K, Hong Y, Qi JG (2009a) Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc Urban Plan 92(3–4):187–198, ISSN 0169-2046. http://dx.doi.org/10.1016/j.landurbplan.2009.05.001

  • Deng J-S, Wang K, Li J, Deng Y-H (2009b) Urban land use change detection using multisensor satellite images. Pedosphere 19(1):96–103, ISSN 1002-0160. http://dx.doi.org/10.1016/S1002-0160(08)60088-0

  • Desclee B, Simonetti D, Mayaux P, Achard A (2013) Multi-sensor monitoring system for forest cover change assessment in central Africa. IEEE J Sel Top Appl Earth Obs Remote Sens 6(1):110–120. doi:10.1109/JSTARS.2013.2240263

    Article  Google Scholar 

  • Dewan AM, Yamaguchi Y (2009) Land use and land cover change in Greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Appl Geogr 29(3):390–401, ISSN 0143–6228. http://dx.doi.org/10.1016/j.apgeog.2008.12.005

  • Dong L, Shan J (2013) A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS J Photogramm Remote Sens 84:85–99, ISSN 0924-2716. http://dx.doi.org/10.1016/j.isprsjprs.2013.06.011

  • Dos Santos Silva MP, Câmara G, Escada MIS, de Souza RCM (2008) Remote sensing image mining: detecting agents of land-use change in tropical forest areas. Int J Remote Sens 29:4803–4822

    Article  Google Scholar 

  • dos Santos Galvanin EA, Porfirio Dal Poz A (2012) Extraction of building roof contours from LiDAR data using a Markov-random-field-based approach. IEEE Trans Geosci Remote Sens 50(3):981–987. doi:10.1109/TGRS.2011.2163823

    Article  Google Scholar 

  • Doxani G, Karantzalos K, Tsakiri-Strati M (2012) Monitoring urban changes based on scale-space filtering and object-oriented classification. Int J Appl Earth Obs Geoinf 15:38–48, ISSN 0303-2434. http://dx.doi.org/10.1016/j.jag.2011.07.002

  • Du P, Liu S, Gamba P, Tan K, Xia J (2012) Fusion of difference images for change detection over urban areas. IEEE J Sel Top Appl Earth Obs Remote Sens 5(4):1076–1086. doi:10.1109/JSTARS.2012.2200879

    Article  Google Scholar 

  • Du P, Liu S, Xia J, Zhao Y (2013) Information fusion techniques for change detection from multi-temporal remote sensing images. Inf Fusion 14(1):19–27, ISSN 1566-2535. http://dx.doi.org/10.1016/j.inffus.2012.05.003

  • Eastman RD, Le-Moigne J, Netanyahu NS (2007) Research issues in image registration for remote sensing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, CVPR’07, 17–22 June 2007, pp 1–8

    Google Scholar 

  • e-geos (2013) Price list. SD-COS 13-010, 33 p. http://www.e-geos.it/products/pdf/prices.pdf. Accessed 16 Nov 2013

  • Falco N, Mura MD, Bovolo F, Benediktsson JA, Bruzzone L (2013) Change detection in VHR images based on morphological attribute profiles. IEEE Geosci Remote Sens Lett 10(3):636–640. doi:10.1109/LGRS.2012.2222340

    Article  Google Scholar 

  • Fernandez-Prieto D, Marconcini M (2011) A novel partially supervised approach to targeted change detection. IEEE Trans Geosci Remote Sens 49(12):5016–5038

    Article  Google Scholar 

  • Ferro A, Brunner D, Bruzzone L (2013) Automatic detection and reconstruction of building radar footprints from single VHR SAR images. IEEE Trans Geosci Remote Sens 51:935–952. doi:http://dx.doi.org/10.1109/TGRS.2012.2205156

  • Gamanya R, De Maeyer P, De Dapper M (2009) Object-oriented change detection for the city of Harare, Zimbabwe. Expert Syst Appl 36(1):571–588, ISSN 0957-4174. http://dx.doi.org/10.1016/j.eswa.2007.09.067

  • Garcia-Dorado I, Demir I, Aliaga DG (2013) Automatic urban modeling using volumetric reconstruction with surface graph cuts. Comput Graph 37(7):896–910. doi:http://dx.doi.org/10.1016/j.cag.2013.07.003

  • GeoStore (2013) Astrium. http://www.astrium-geo.com/geostore

  • Ghosh A, Mishra NS, Ghosh S (2011) Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf Sci 181(4):699–715, ISSN 0020-0255. http://dx.doi.org/10.1016/j.ins.2010.10.016

  • Ghosh A, Subudhi BN, Bruzzone L (2013) Integration of Gibbs Markov random field and Hopfield-type neural networks for unsupervised change detection in remotely sensed multitemporal images. IEEE Trans Image Process 22(8):3087–3096. doi:10.1109/TIP.2013.2259833

    Article  Google Scholar 

  • Gilles J, Meyer Y (2010) Properties of BV-G structures + textures decomposition models. Application to road detection in satellite images. IEEE Trans Image Process 19(11):2793–2800. doi:10.1109/TIP.2010.2049946

    Article  Google Scholar 

  • Giustarini L, Hostache R, Matgen P, Schumann GJ-P, Bates PD, Mason DC (2013) A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 51(4):2417–2430. doi:10.1109/TGRS.2012.2210901

    Article  Google Scholar 

  • Gong M, Zhou Z, Ma J (2012) Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans Image Process 21(4):2141–2151. doi:10.1109/TIP.2011.2170702

    Article  Google Scholar 

  • Gonzalez-Aguilera D, Crespo-Matellan E, Hernandez-Lopez D, Rodriguez-Gonzalvez P (2013) Automated urban analysis based on LiDAR-derived building models. IEEE Trans Geosci Remote Sens 51(3):1844–1851

    Article  Google Scholar 

  • Gueguen L, Soille P, Pesaresi M (2011) Change detection based on information measure. IEEE Trans Geosci Remote Sens 49(11):4503–4515

    Article  Google Scholar 

  • Haala N, Kada M (2010) An update on automatic 3D building reconstruction. ISPRS J Photogramm Remote Sens 65(6):570–580. doi:http://dx.doi.org/10.1016/j.isprsjprs.2010.09.006

  • Habib T, Inglada J, Mercier G, Chanussot J (2009) Support vector reduction in SVM algorithm for abrupt change detection in remote sensing. IEEE Geosci Remote Sens Lett 6(3):606–610

    Article  Google Scholar 

  • Han T, Wulder MA, White JC, Coops NC, Alvarez MF, Butson C (2007) An efficient protocol to process Landsat images for change detection with tasselled cap transformation. IEEE Geosci Remote Sens Lett 4:147–151

    Article  Google Scholar 

  • Hane C, Zach C, Cohen A, Angst R, Pollefeys M (2013) Joint 3D scene reconstruction and class segmentation. In: 2013 IEEE conference on Computer Vision and Pattern Recognition (CVPR), 23–28 June 2013, pp 97–104. doi:10.1109/CVPR.2013.20

  • Hansen MC, Loveland TR (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sens Environ 122:66–74, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2011.08.024

  • Hansen MC, Egorov A, Potapov PV, Stehman SV, Tyukavina A, Turubanova SA, Roy DP, Goetz SJ, Loveland TR, Ju J, Kommareddy A, Kovalskyy V, Forsyth C, Bents T (2014) Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD). Remote Sens Environ 140:466–484, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2013.08.014

  • Hao M, Shi W, Zhang H, Li C (2014) Unsupervised change detection with expectation-maximization-based level set. IEEE Geosci Remote Sens Lett 11(1):210–214. doi:10.1109/LGRS.2013.2252879

    Article  Google Scholar 

  • He C, Wei A, Shi P, Zhang Q, Zhao Y (2011a) Detecting land-use/land-cover change in rural–urban fringe areas using extended change-vector analysis. Int J Appl Earth Obs Geoinf 13(4):572–585, ISSN 0303-2434. http://dx.doi.org/10.1016/j.jag.2011.03.002

  • He R, Xiong N, Yang LT, Park JH (2011b) Using multi-modal semantic association rules to fuse keywords and visual features automatically for Web image retrieval. Inf Fusion 12(3):223–230, ISSN 1566-2535. http://dx.doi.org/10.1016/j.inffus.2010.02.001

  • Hebel M, Arens M, Stilla U (2013) Change detection in urban areas by object-based analysis and on-the-fly comparison of multi-view ALS data. ISPRS J Photogramm Remote Sens 86:52–64, ISSN 0924-2716

    Article  Google Scholar 

  • Heinrich MP, Jenkinson M, Bhushan M, Matin T, Gleeson FV, Brady SM, Schnabel JA (2012) MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Med Image Anal 16(7):1423–1435, ISSN 1361-8415. http://dx.doi.org/10.1016/j.media.2012.05.008

  • Heo J, Jeong S, Park H-K, Jung JH, Han S, Hong S, Sohn H-G (2013) Productive high complexity 3D city modeling with point clouds collected from terrestrial LiDAR. Comput Environ Urban Syst 41:26–38

    Article  Google Scholar 

  • Hoersch B, Amans V (2012) GMES space component data access portfolio: data warehouse 2011–2014. European Space Agency, Frascati. http://gmesdata.esa.int/web/gsc/about-gscdata-access

  • Hu J, Zhang Y (2013) Seasonal change of land-use/land-cover (LULC) detection using MODIS data in rapid urbanization regions: a case study of the pearl river delta region (China). IEEE J Sel Top Appl Earth Obs Remote Sens 6(4):1913–1920

    Article  Google Scholar 

  • Huang X, Zhang L (2012) Morphological building/shadow index for building extraction from high-resolution imagery over urban areas. IEEE J Sel Top Appl Earth Obs Remote Sens 5(1):161–172

    Article  Google Scholar 

  • Huo C, Zhou Z, Lu H, Chen K, Pan C (2010) Fast object-level change detection for VHR images. IEEE Geosci Remote Sens Lett 7(1):118–122

    Article  Google Scholar 

  • Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 80:91–106, ISSN 0924-2716. http://dx.doi.org/10.1016/j.isprsjprs.2013.03.006

  • Im J, Rhee J, Jensen JR, Hodgson ME (2007) An automated binary change detection model using a calibration approach. Remote Sens Environ 106(1):89–105, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2006.07.019

  • Im J, Jensen JR, Hodgson ME (2008) Optimizing the binary discriminant function in change detection applications. Remote Sens Environ 112(6):2761–2776, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2008.01.007

  • Irons JR, Loveland TR (2013) Eighth Landsat satellite becomes operational. Photogramm Eng Remote Sens 79:398–401

    Google Scholar 

  • Irschara A, Rumpler M, Meixner P, Pock T, Bischof H (2012) Efficient and globally optimal multi view dense matching for aerial images. In: ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, Melbourne

    Google Scholar 

  • Izadi M, Saeedi P (2012) Three-dimensional polygonal building model estimation from single satellite images. IEEE Trans Geosci Remote Sens 50(6):2254–2272. doi:10.1109/TGRS.2011.2172995

    Article  Google Scholar 

  • James LA, Hodgson ME, Ghoshal S, Latiolais MM (2012) Geomorphic change detection using historic maps and DEM differencing: the temporal dimension of geospatial analysis. Geomorphology 137(1):181–198, ISSN 0169-555X. http://dx.doi.org/10.1016/j.geomorph.2010.10.039

  • Karantzalos K, Argialas D (2009) A region-based level set segmentation for automatic detection of man-made objects from aerial and satellite images. Photogramm Eng Remote Sens 75(6):667–678

    Article  Google Scholar 

  • Karantzalos K, Paragios N (2009) Recognition-driven 2D competing priors towards automatic and accurate building detection. IEEE Trans Geosci Remote Sens 47(1):133–144

    Article  Google Scholar 

  • Karantzalos K, Paragios N (2010) Large-scale building reconstruction through information fusion and 3D priors. IEEE Trans Geosci Remote Sens 48(5):2283–2296

    Article  Google Scholar 

  • Katartzis A, Sahli H (2008) A stochastic framework for the identification of building rooftops using a single remote sensing image. IEEE Trans Geosci Remote Sens 46(1):259–271. doi:10.1109/TGRS.2007.904953

    Article  Google Scholar 

  • Kit O, Lüdeke M (2013) Automated detection of slum area change in Hyderabad, India using multitemporal satellite imagery. ISPRS J Photogramm Remote Sens 83:130–137, ISSN 0924-2716. http://dx.doi.org/10.1016/j.isprsjprs.2013.06.009

  • Klaric MN, Claywell BC, Scott GJ, Hudson NJ, Sjahputera O, Li Y, Barratt ST, Keller JM, Davis CH (2013) GeoCDX: an automated change detection and exploitation system for high-resolution satellite imagery. IEEE Trans Geosci Remote Sens 51(4):2067–2086

    Article  Google Scholar 

  • Klonus S, Tomowski D, Ehlers M, Reinartz P, Michel U (2012) Combined edge segment texture analysis for the detection of damaged buildings in crisis areas. IEEE J Sel Top Appl Earth Obs Remote Sens 5(4):1118–1128

    Article  Google Scholar 

  • Knudby A, Newman C, Shaghude Y, Muhando C (2010) Simple and effective monitoring of historic changes in nearshore environments using the free archive of Landsat imagery. Int J Appl Earth Obs Geoinf 12(Suppl 1):S116–S122, ISSN 0303-2434. http://dx.doi.org/10.1016/j.jag.2009.09.002

  • Lafarge F, Descombes X, Zerubia J, Pierrot-Deseilligny M (2010) Structural approach for building reconstruction from a single DSM. IEEE Trans Pattern Anal Mach Intell 32(1):135–147. doi:10.1109/TPAMI.2008.281

    Article  Google Scholar 

  • Le Moigne J, Netanyahu NS, Eastman RD (2011) Image registration for remote sensing. Cambridge University Press, Cambridge, 497p. ISBN 9780521516112

    Book  Google Scholar 

  • Legg PA, Rosin PL, Marshall D, Morgan JE (2013) Improving accuracy and efficiency of mutual information for multi-modal retinal image registration using adaptive probability density estimation. Comput Med Image Graph 37:597–606

    Article  Google Scholar 

  • Leinenkugel P, Esch T, Kuenzer C (2011) Settlement detection and impervious surface estimation in the Mekong Delta using optical and SAR remote sensing data. Remote Sens Environ 115(12):3007–3019, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2011.06.004

  • Ling F, Li W, Du Y, Li X (2011) Land cover change mapping at the subpixel scale with different spatial-resolution remotely sensed imagery. IEEE Geosci Remote Sens Lett 8(1):182–186

    Article  Google Scholar 

  • Liu Z-g, Dezert J, Mercier G, Pan Q (2012) Dynamic evidential reasoning for change detection in remote sensing images. IEEE Trans Geosci Remote Sens 50(5):1955–1967. doi:10.1109/TGRS.2011.2169075

    Article  Google Scholar 

  • Loch-Dehbi S, Plümer L (2011) Automatic reasoning for geometric constraints in 3D city models with uncertain observations. ISPRS J Photogramm Remote Sens 66(2):177–187. doi:http://dx.doi.org/10.1016/j.isprsjprs.2010.12.003

  • Longbotham N, Pacifici F, Glenn T, Zare A, Volpi M, Tuia D, Christophe E, Michel J, Inglada J, Chanussot J, Du Q (2012) Multi-modal change detection, application to the detection of flooded areas: outcome of the 2009–2010 data fusion contest. IEEE J Sel Top Appl Earth Obs Remote Sens 5(1):331–342. doi:10.1109/JSTARS.2011.2179638

    Article  Google Scholar 

  • Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  • Lu D, Mausel P, Brondízio E, Moran E (2004) Change detection techniques. Int J Remote Sens 25(12):2365–2407

    Article  Google Scholar 

  • Lu D, Tian H, Zhou G, Ge H (2008) Regional mapping of human settlements in southeastern China with multisensor remotely sensed data. Remote Sens Environ 112(9):3668–3679

    Article  Google Scholar 

  • Lu D, Moran E, Hetrick S (2011a) Detection of impervious surface change with multitemporal Landsat images in an urban–rural frontier. ISPRS J Photogramm Remote Sens 66(3):298–306, ISSN 0924-2716. http://dx.doi.org/10.1016/j.isprsjprs.2010.10.010

  • Lu P, Stumpf A, Kerle N, Casagli N (2011b) Object-oriented change detection for landslide rapid mapping. IEEE Geosci Remote Sens Lett 8(4):701–705

    Article  Google Scholar 

  • Lu D, Moran E, Hetrick S, Li G (2011c) Land-use and land-cover change detection. In: Weng Q (ed) Advances in environmental remote sensing sensors, algorithms, and applications. CRC Press/Taylor & Francis Group, New York, pp 273–290

    Chapter  Google Scholar 

  • Luo W, Li H (2011) Soft-change detection in optical satellite images. IEEE Geosci Remote Sens Lett 8(5):879–883

    Article  Google Scholar 

  • Ma J, Gong M, Zhou Z (2012) Wavelet fusion on ratio images for change detection in SAR images. IEEE Geosci Remote Sens Lett 9(6):1122–1126. doi:10.1109/LGRS.2012.2191387

    Article  Google Scholar 

  • Marchesi S, Bruzzone L (2009) ICA and kernel ICA for change detection in multispectral remote sensing images. IEEE Int Geosci Remote Sens Symp (IGARSS) 2:II-980–II-983

    Google Scholar 

  • Marino A, Cloude SR, Lopez-Sanchez JM (2013) A new polarimetric change detector in radar imagery. IEEE Trans Geosci Remote Sens 51(5):2986–3000. doi:10.1109/TGRS.2012.2211883

    Article  Google Scholar 

  • Marpu PR, Gamba P, Canty MJ (2011) Improving change detection results of IR-MAD by eliminating strong changes. IEEE Geosci Remote Sens Lett 8(4):799–803

    Article  Google Scholar 

  • Matei BC, Sawhney H, Samarasekera S, Kim J, Kumar R (2008) Building segmentation for densely built urban regions using aerial LiDAR data. In: Proceeding of the IEEE conference on computer vision and pattern recognition. IEEE, Piscataway, pp 1–8

    Google Scholar 

  • Michishita R, Jiang Z, Xu B (2012) Monitoring two decades of urbanization in the Poyang Lake area, China through spectral unmixing. Remote Sens Environ 117:3–18, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2011.06.021

  • Shafizadeh-Moghadam H, Helbich M (2013) Spatiotemporal urbanization processes in the megacity of Mumbai, India: a Markov chains-cellular automata urban growth model. Appl Geogr 40:140–149, ISSN 0143-6228. http://dx.doi.org/10.1016/j.apgeog.2013.01.009

  • Moser G, Serpico SB (2009) Unsupervised change detection from multichannel SAR data by Markovian data fusion. IEEE Trans Geosci Remote Sens 47(7):2114–2128. doi:10.1109/TGRS.2009.2012407

    Article  Google Scholar 

  • Moser G, Angiati E, Serpico SB (2011) Multiscale unsupervised change detection on optical images by Markov random fields and wavelets. IEEE Geosci Remote Sens Lett 8(4):725–729

    Article  Google Scholar 

  • Nielsen AA (2007) The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Trans Image Process 16(2):463–478

    Article  Google Scholar 

  • Pacifici F, Del Frate F (2010) Automatic change detection in very high resolution images with pulse-coupled neural networks. IEEE Geosci Remote Sens Lett 7(1):58–62. doi:10.1109/LGRS.2009.2021780

    Article  Google Scholar 

  • Pagot E, Pesaresi M (2008) Systematic study of the urban postconflict change classification performance using spectral and structural features in a support vector machine. IEEE Trans Geosci Remote Sens 1(2):120–128

    Google Scholar 

  • Phelps J, Webb EL, Adams WM (2013) Biodiversity co-benefits of policies to reduce forest-carbon emissions. Nat Clim Chang 2:497–503. doi:10.1038/nclimate1462

    Google Scholar 

  • Poulain V, Inglada J, Spigai M, Tourneret J-Y, Marthon P (2011) High-resolution optical and SAR image fusion for building database updating. IEEE Trans Geosci Remote Sens 49(8):2900–2910. doi:10.1109/TGRS.2011.2113351

    Article  Google Scholar 

  • Poullis C, You S (2010) Delineation and geometric modeling of road networks. ISPRS J Photogramm Remote Sens 65(2):165–181, ISSN 0924-2716. http://dx.doi.org/10.1016/j.isprsjprs.2009.10.004

  • Pratola C, Del Frate F, Schiavon G, Solimini D (2013) Toward fully automatic detection of changes in suburban areas from VHR SAR images by combining multiple neural-network models. IEEE Trans Geosci Remote Sens 51(4):2055–2066. doi:10.1109/TGRS.2012.2236846

    Article  Google Scholar 

  • Radke AJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14(3):294–307

    Article  Google Scholar 

  • Renza D, Martinez E, Arquero A (2013) A new approach to change detection in multispectral images by means of ERGAS index. IEEE Geosci Remote Sens Lett 10(1):76–80. doi:10.1109/LGRS.2012.2193372

    Article  Google Scholar 

  • Robin A, Moisan L, Le Hegarat-Mascle S (2010) An a-contrario approach for subpixel change detection in satellite imagery. IEEE Trans Pattern Anal Mach Intell 32(11):1977–1993. doi:10.1109/TPAMI.2010.37

    Article  Google Scholar 

  • Rottensteiner F, Sohn G, Gerke M, Wegner JD, Breitkopf U, Jung J (2013) Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS J Photogramm Remote Sens. http://dx.doi.org/10.1016/j.isprsjprs.2013.10.004

  • Rousson M, Paragios N (2008) Prior knowledge, level set representations and visual grouping. Int J Comput Vis 76(3):231–243

    Article  Google Scholar 

  • Roy DP (2000) The impact of misregistration upon composited wide field of view satellite data and implications for change detection. IEEE Trans Geosci Remote Sens 38(4):2017–2032

    Article  Google Scholar 

  • Rutzinger M, Rottensteiner F, Pfeifer N (2009) A comparison of evaluation techniques for building extraction from airborne laser scanning. IEEE J Sel Top Appl Earth Obs Remote Sens 2(1):11–20. doi:10.1109/JSTARS.2009.2012488

    Article  Google Scholar 

  • Salmon BP, Olivier JC, Wessels KJ, Kleynhans W, Van den Bergh F, Steenkamp KC (2011) Unsupervised land cover change detection: meaningful sequential time series analysis. IEEE J Sel Top Appl Earth Obs Remote Sens 4(2):327–335

    Article  Google Scholar 

  • Sampath A, Shan J (2010) Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds. IEEE Trans Geosci Remote Sens 48(3):1554–1567. doi:10.1109/TGRS.2009.2030180

    Article  Google Scholar 

  • Schneider A (2012) Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach. Remote Sens Environ 124:689–704, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2012.06.006

  • Senaras C, Ozay M, Yarman Vural FT (2013) Building detection with decision fusion. IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1295–1304. doi:10.1109/JSTARS.2013.2249498

    Article  Google Scholar 

  • Sesnie SE, Gessler PE, Finegan B, Thessler S (2008) Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sens Environ 112(5):2145–2159, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2007.08.025

  • Sexton JO, Urban DL, Donohue MJ, Song C (2013) Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record. Remote Sens Environ 128:246–258, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2012.10.010

  • Simon L, Teboul O, Koutsourakis P, Paragios N (2010) Random exploration of the procedural space for single-view 3D modeling of buildings. Int J Comput Vis 93(2):253–271

    Article  Google Scholar 

  • Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10(6):989–1003

    Article  Google Scholar 

  • Sirmacek B, Taubenbock H, Reinartz P, Ehlers M (2012) Performance evaluation for 3-D city model generation of six different DSMs from air- and spaceborne sensors. IEEE J Sel Top Appl Earth Obs Remote Sens 5(1):59–70. doi:10.1109/JSTARS.2011.2178399

    Article  Google Scholar 

  • Sirmacek B, Unsalan C (2011) A probabilistic framework to detect buildings in aerial and satellite images. IEEE Trans Geosci Remote Sens 49(1):211–221. doi:10.1109/TGRS.2010.2053713

    Article  Google Scholar 

  • Sjahputera O, Scott GJ, Claywell B, Klaric MN, Hudson NJ, Keller JM, Davis CH (2011) Clustering of detected changes in high-resolution satellite imagery using a stabilized competitive agglomeration algorithm. IEEE Trans Geosci Remote Sens 49(12):4687–4703. doi:10.1109/TGRS.2011.2152847

    Article  Google Scholar 

  • Sotiras A, Davatzikos C, Paragios N (2013) Deformable medical image registration: a survey. IEEE Trans Med Image 32(7):1153–1190

    Article  Google Scholar 

  • Sportouche H, Tupin F, Denise L (2011) Extraction and three-dimensional reconstruction of isolated buildings in urban scenes from high-resolution optical and SAR spaceborne images. IEEE Trans Geosci Remote Sens 49(10):3932–3946. doi:10.1109/TGRS.2011.2132727

    Article  Google Scholar 

  • Stankov K, He D-C (2013) Building detection in very high spatial resolution multispectral images using the hit-or-miss transform. IEEE Geosci Remote Sens Lett 10(1):86–90. doi:10.1109/LGRS.2012.2193552

    Article  Google Scholar 

  • Sun S, Salvaggio C (2013) Aerial 3D building detection and modeling from airborne LiDAR point clouds. IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1440–1449. doi:10.1109/JSTARS.2013.2251457

    Article  Google Scholar 

  • Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, Tappen M, Rother C (2008) A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans Pattern Anal Mach Intell 30(6):1068–1080

    Article  Google Scholar 

  • Tack F, Buyuksalih G, Goossens R (2012) 3D building reconstruction based on given ground plan information and surface models extracted from spaceborne imagery. ISPRS J Photogramm Remote Sens 67(0):52–64. doi:http://dx.doi.org/10.1016/j.isprsjprs.2011.10.003

  • Taneja A, Ballan L, Pollefeys M (2013) City-scale change detection in cadastral 3D models using images. In: Proceedings of the IEEE international conference on computer vision and pattern recognition

    Google Scholar 

  • Tang Y, Huang X, Zhang L (2013) Fault-tolerant building change detection from urban high-resolution remote sensing imagery. IEEE Geosci Remote Sens Lett 10(5):1060–1064. doi:10.1109/LGRS.2012.2228626

    Article  Google Scholar 

  • Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S (2012) Monitoring urbanization in mega cities from space. Remote Sens Environ 117:162–176, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2011.09.015

  • Tian J, Reinartz P, d’Angelo P, Ehlers M (2013) Region-based automatic building and forest change detection on Cartosat-1 stereo imagery. ISPRS J Photogramm Remote Sens 79:226–239, ISSN 0924-2716. http://dx.doi.org/10.1016/j.isprsjprs.2013.02.017

  • Turlapaty A, Gokaraju B, Du Q, Younan NH, Aanstoos JV (2012) A hybrid approach for building extraction from spaceborne multi-angular optical imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 5(1):89–100. doi:10.1109/JSTARS.2011.2179792

    Article  Google Scholar 

  • Tzotsos A, Karantzalos K, Argialas D (2011) Object-based image analysis through nonlinear scale-space filtering. ISPRS J Photogramm Remote Sens 66(1):2–16, ISSN 0924-2716. http://dx.doi.org/10.1016/j.isprsjprs.2010.07.001

  • Tzotsos A, Karantzalos K, Argialas D (2014) Multiscale segmentation and classification of remote sensing imagery with advanced edge and scale-space features. In: Weng Q (ed) Scale issues in remote sensing. Wiley, Hoboken. doi:10.1002/9781118801628.ch09

    Google Scholar 

  • Unsalan C, Sirmacek B (2012) Road network detection using probabilistic and graph theoretical methods. IEEE Trans Geosci Remote Sens 50(11):4441–4453. doi:10.1109/TGRS.2012.2190078

    Article  Google Scholar 

  • Vicente-Serrano SM, Pérez-Cabello F, Lasanta T (2008) Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images. Remote Sens Environ 112(10):3916–3934, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2008.06.011

  • Vieira MA, Formaggio AR, Rennó CD, Atzberger C, Aguiar DA, Mello MP (2012) Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens Environ 123:553–562, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2012.04.011

  • Villa P (2012) Mapping urban growth using soil and vegetation index and Landsat data: the Milan (Italy) city area case study. Landsc Urban Plan 107(3):245–254, ISSN 0169-2046. http://dx.doi.org/10.1016/j.landurbplan.2012.06.014

  • Villa G, Moreno J, Calera A, Amorós-López J, Camps-Valls G, Domenech E, Garrido J, González-Matesanz J, Gómez-Chova L, Martínez JÁ, Molina S, Peces JJ, Plaza N, Porcuna A, Tejeiro JA, Valcárcel N (2012) Spectro-temporal reflectance surfaces: a new conceptual framework for the integration of remote-sensing data from multiple different sensors. Int J Remote Sens 34:3699–3715. doi:10.1080/01431161.2012.716910

    Article  Google Scholar 

  • Volpi M, Tuia D, Camps-Valls G, Kanevski M (2012) Unsupervised change detection with kernels. IEEE Geosci Remote Sens Lett 9(6):1026–1030

    Article  Google Scholar 

  • Volpi M, Tuia D, Bovolo F, Kanevski M, Bruzzone L (2013) Supervised change detection in VHR images using contextual information and support vector machines. Int J Appl Earth Obs Geoinf 20:77–85, ISSN 0303-2434. http://dx.doi.org/10.1016/j.jag.2011.10.013

  • Wachinger C, Navab N (2012) Entropy and Laplacian images: structural representations for multi-modal registration. Med Image Anal 16(1):1–17, ISSN 1361-8415. http://dx.doi.org/10.1016/j.media.2011.03.001

  • Wang T-L, Jin Y-Q (2012) Postearthquake building damage assessment using multi-mutual information from pre-event optical image and postevent SAR image. IEEE Geosci Remote Sens Lett 9(3):452–456

    Article  Google Scholar 

  • Wang F, Wu Y, Zhang Q, Zhang P, Li M, Lu Y (2013) Unsupervised change detection on SAR images using triplet markov field model. IEEE Geosci Remote Sens Lett 10(4):697–701. doi:10.1109/LGRS.2012.2219494

    Article  Google Scholar 

  • Wegner JD, Hansch R, Thiele A, Soergel U (2011) Building detection from one orthophoto and high-resolution inSAR data using conditional random fields. IEEE J Sel Top Appl Earth Obs Remote Sens 4(1):83–91. doi:10.1109/JSTARS.2010.2053521

    Article  Google Scholar 

  • Weng Q (2011) Advances in environmental remote sensing: sensors, algorithms and applications. CRC Press/Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • Weng Q (2012) Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends. Remote Sens Environ 117(15):34–49

    Article  Google Scholar 

  • Wilkinson G (2005) Results and implications of a study of fifteen years of satellite image classification experiments. IEEE Trans Geosci Remote Sens 43(3):433–440

    Article  Google Scholar 

  • Woodcock CE, Allen R, Anderson M, Belward A, Bindschadler R, Cohen W, Gao F et al (2008) Free access to Landsat imagery. Science 320:1011

    Article  Google Scholar 

  • Wulder MA, Butson CR, White JC (2008) Cross-sensor change detection over a forested landscape: options to enable continuity of medium spatial resolution measures. Remote Sens Environ 112(3):796–809, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2007.06.013

  • Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE (2012) Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122:2–10

    Article  Google Scholar 

  • Xian G, Homer C (2010) Updating the 2001 national land cover database impervious surface products to 2006 using landsat imagery change detection methods. Remote Sens Environ 114:1676–1686

    Article  Google Scholar 

  • Xian G, Homer C, Fry J (2009) Updating the 2001 national land cover database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens Environ 113(6):1133–1147, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2009.02.004

  • Yang B, Zhang Y, Luan X (2013) A probabilistic relaxation approach for matching road networks. Int J Geogr Inf Sci 27(2):319–338. doi:10.1080/13658816.2012.683486

    Article  Google Scholar 

  • Yang X, Lo CP (2000) Relative radiometric normalization performance for change detection from multi-date satellite images. Photogramm Eng Remote Sens 66:967–980

    Google Scholar 

  • Yetgin Z (2012) Unsupervised change detection of satellite images using local gradual descent. IEEE Trans Geosci Remote Sens 50(5):1919–1929. doi:10.1109/TGRS.2011.2168230

    Article  Google Scholar 

  • Yousif O, Ban Y (2013) Improving urban change detection from multitemporal SAR images using PCA-NLM. IEEE Trans Geosci Remote Sens 51(4):2032–2041. doi:10.1109/TGRS.2013.2245900

    Article  Google Scholar 

  • Zanotta DC, Haertel V (2012) Gradual land cover change detection based on multitemporal fraction images. Pattern Recognit 45(8):2927–2937, ISSN 0031-3203. http://dx.doi.org/10.1016/j.patcog.2012.02.004

  • Zebedin L, Bauer J, Karner K, Bischof H (2008) Fusion of feature and area-based information for urban buildings modeling from aerial imagery. In: European conference on computer vision, vol 5305, Lecture notes in computer science. Springer, Berlin, pp 873–886

    Google Scholar 

  • Zhang J (2012) Multi-source remote sensing fusion: status and trends. Int J Image Data Fusion 1(1):5–24

    Article  Google Scholar 

  • Zhang Q, Seto KC (2011) Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens Environ 115(9):2320–2329, ISSN 0034-4257. http://dx.doi.org/10.1016/j.rse.2011.04.032

  • Zhang H, Qi Z-f, Ye X-y, Cai Y-b, Ma W-c, Chen M-n (2013) Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl Geogr 44:121–133, ISSN 0143-6228. http://dx.doi.org/10.1016/j.apgeog.2013.07.021

  • Zhou W, Huang G, Troy A, Cadenasso M (2009) Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: a comparison study. Remote Sens Environ 113(8):1769–1777

    Article  Google Scholar 

Download references

Acknowledgment

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES: Reinforcement of the interdisciplinary and/or interinstitutional research and innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Karantzalos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karantzalos, K. (2015). Recent Advances on 2D and 3D Change Detection in Urban Environments from Remote Sensing Data. In: Helbich, M., Jokar Arsanjani, J., Leitner, M. (eds) Computational Approaches for Urban Environments. Geotechnologies and the Environment, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-11469-9_10

Download citation

Publish with us

Policies and ethics