Skip to main content

Abstract

Members of the related to tyrosine kinase (RYK) receptor subfamily display a small extracellular region featuring a Wnt inhibitory factor domain, a single transmembrane helix with a strong propensity to self-associate, and an intracellular region exhibiting several abnormal protein sequence motifs that contribute to a protein tyrosine kinase domain. These sequence deviations are characteristic and strongly associated with a lack of detectable intrinsic protein kinase activity, implying that RYK receptors form a subfamily of pseudokinases within the receptor-type protein tyrosine kinase group. RYK subfamily members are receptors for the Wnt family of acylated glycoproteins during embryonic development and in postnatal axon pathfinding. Emerging details of Wnt/RYK-triggered β-catenin-dependent and β-catenin-independent signaling cascades regulate metazoan cell polarity and fate patterning, survival, proliferation, drug resistance, axon pathfinding and topographic mapping, migration, and the selection of appropriate target sites by cell processes. Sequential Notch-like proteolytic events that target distinct sites in RYK contribute in significant but mechanistically ill-defined ways to signaling via the coupled release of an extracellular fragment with predicted Wnt-binding activity and generation of a cytoplasmic/nuclear fragment that regulates cell fate in the mammalian central nervous system. These exciting discoveries, together with early insights into the involvement of RYK in mammalian pathology, indicate that RYK, the products of its proteolysis, and its protein partners represent attractive candidates for therapeutic targeting in a wide variety of animal and human conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Anterior commissure

AF-6:

MLLT4 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila) translocated to 4 (Homo sapiens (human)), ALL-1 fused gene from chromosome 6

AL:

Drosophila antennal lobe

ALM:

Anterior lateral microtubule

AP:

Anterior–posterior axis

APP:

Amyloid precursor protein

ATP:

Adenosine 5′-triphosphate

ATP5O:

ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit

βarr:

β-Arrestin

βgeo:

β-Galactosidase-neomycin phosphotransferase II fusion protein

CAM-1:

CAN cell migration defective-1

CaMKII:

Ca2+/calmodulin-dependent protein kinase II α

CASK:

Calcium/calmodulin-dependent serine protein kinase (MAGUK family)

CCK4:

Colon carcinoma kinase 4

Cdc37:

Cell division cycle 37

cDNA:

Complementary DNA

CE:

Convergent extension

CELSR2:

Cadherin EGF LAG seven-pass G-type receptor 2

CFZ-2:

Caenorhabditis frizzled homolog 2

CNS:

Central nervous system

CK1α:

Casein kinase 1α

COSMIC:

Catalogue of Somatic Mutations in Cancer

CST:

Corticospinal tract

CWN-1:

C. elegans WNT family-1

CWN-2:

C. elegans WNT family-2

Da:

Dalton

DA:

Dopaminergic

DL:

Dorsolateral

DLC:

Dorsolateral cluster

DNA-PKcs:

Catalytic subunit of the DNA-dependent protein kinase

DRG:

Dorsal root ganglion

dnt :

doughnut on 2

drl :

derailed

Drl-2 :

derailed-2

DRS:

Dominant Robinow syndrome

DSG2:

Desmoglein 2

DsRed2:

Discosoma sp. red fluorescent protein variant 2

DV:

Dorsal–ventral axis

Dvl:

Dishevelled

E:

Rodent embryonic day

ECM:

Extracellular matrix

EGL-20:

Egg-laying defective-20

ERBB3:

v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3

ERBB4:

v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4

Eph:

Erythropoietin-producing hepatoma

FISH:

Fluorescence in situ hybridization

Fzd:

Frizzled

GABA:

γ-Aminobutyric acid

GFP:

Green fluorescent protein

GPR125:

G protein-coupled receptor 125

GSK3:

Glycogen synthase kinase 3

hpf:

Hours postfertilization

Hsp90:

Heat shock protein 90 kDa

Htt:

Huntingtin

IP3R:

Inositol 1,4,5-trisphosphate receptor

JAK2:

Janus kinase 2

JH2:

Janus homology 2

JNK:

c-JUN N-terminal kinase/mitogen-activated protein kinase 8

kb:

Kilobase pairs

L:

C. elegans larval stage

LGE:

Lateral ganglionic eminence

LGR:

Leucine-rich repeat-containing G protein-coupled receptor

LIN-17:

Abnormal cell lineage-17

LIN-18:

Abnormal cell lineage-18

lio :

linotte

LRP:

Low-density lipoprotein receptor-related protein

MAP2:

Microtubule-associated protein 2

MB:

Drosophila mushroom body

MGE:

Medial ganglionic eminence

MIB1:

Mindbomb E3 ubiquitin protein ligase 1

MIG-1:

Abnormal cell migration-1

ML:

Medial–lateral axis

MOM-2:

more mesoderm-2

MOM-5:

more mesoderm-5

mRNA:

Messenger RNA

MuSK:

Muscle, skeletal, receptor tyrosine kinase

NCBI:

National Center for Biotechnology Information

NFATc:

Nuclear factor of activated T cells

NG2:

Neuron–glial antigen 2

NMJ:

Neuromuscular junction

NPC:

Neural progenitor cell

Nrt:

Neurotactin

OR:

Odorant receptor

ORN:

Olfactory receptor neuron

OT:

Optic tectum

P:

Postnatal

PC:

Posterior commissure

PCP:

Planar cell polarity

PCR:

Polymerase chain reaction

PDZ:

Postsynaptic density protein 95/discs large-1/zonula occludens-1

PK:

Protein kinase

PLR-1:

Cell polarity defective-1

PN:

Projection neuron

Psen:

Presenilin

PTK:

Protein tyrosine kinase

PTK7:

Protein tyrosine kinase 7

RRS:

Recessive Robinow syndrome

Rab5:

RAB5A member of the RAS oncogene family

Rβ:

Ryk β-amyloid-like fragment

RGC:

Retinal ganglion cell

RING:

Really interesting new gene

RNF43:

Ring finger protein 43

ROCK:

Rho-associated coiled-coil containing protein kinase 1 or 2

ROR:

Receptor tyrosine kinase-like orphan receptor

RT:

Reverse transcription

R spine:

Regulatory spine

RTK:

Receptor-type protein tyrosine kinase

RWD1:

Fully human anti-RYK (WIF domain-specific) monoclonal antibody

Ryk:

Related to tyrosine kinase

Ryk-CTF45:

Ryk carboxyl-terminal fragment of 45 kDa

Ryk-CTF55:

Ryk carboxyl-terminal fragment of 55 kDa

Ryk-FL:

Full-length Ryk lacking N-terminal signal peptide

Ryk-ICF:

Ryk intracellular fragment

Ryk-NTF:

Ryk amino-terminal fragment

S:

Svedberg unit

SC:

Superior colliculus

Scr :

sex combs reduced

Sema:

Semaphorin

sFRP2:

Secreted Fzd-related protein 2

SFK:

Src family kinase

SH2:

Src homology domain 2

SH3:

Src homology domain 3

siRNA:

Short interfering RNA

SOD1:

Superoxide dismutase 1, soluble

Src:

Src proto-oncogene, non-receptor tyrosine kinase

STYK1:

Serine/threonine/tyrosine kinase 1

TBC:

Tetrabasic cleavage

TCF/LEF:

T cell factor/lymphocyte enhancer factor

TGF-β:

Transforming growth factor-β

TM:

Transmembrane

TN:

Temporal–nasal axis

TRPC:

Transient receptor potential channel

TUJ1:

βIII-tubulin

UBC:

Ubiquitin C

Vangl2:

Van Gogh-like planar cell polarity protein 2

VM:

Ventral midbrain or ventral–medial axis

VNC:

Drosophila ventral nerve cord

VPC:

Vulval precursor cell

VZ:

Ventricular zone

WASF1:

WAS protein family, member 1

WG:

Wingless

WIF:

Wnt inhibitor factor

WNK:

With-no-lysine protein kinase

Wnt:

Wingless-related integration site

XRyk:

Xenopus Ryk

ZNRF3:

Zinc and ring finger 3

References

  1. Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241(4861):42–52.

    CAS  PubMed  Google Scholar 

  2. Kelman Z, Simon-Chazottes D, Guenet JL, Yarden Y. The murine vik gene (chromosome 9) encodes a putative receptor with unique protein kinase motifs. Oncogene. 1993;8(1):37–44.

    CAS  PubMed  Google Scholar 

  3. Maminta ML, Williams KL, Nakagawara A, Enger KT, Guo C, Brodeur GM, et al. Identification of a novel tyrosine kinase receptor-like molecule in neuroblastomas. Biochem Biophys Res Commun. 1992;189(2):1077–83.

    CAS  PubMed  Google Scholar 

  4. Partanen J, Makela TP, Alitalo R, Lehvaslaiho H, Alitalo K. Putative tyrosine kinases expressed in K-562 human leukemia cells. Proc Natl Acad Sci USA. 1990;87(22):8913–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Paul SR, Merberg D, Finnerty H, Morris GE, Morris JC, Jones SS, et al. Molecular cloning of the cDNA encoding a receptor tyrosine kinase-related molecule with a catalytic region homologous to c-met. Int J Cell Cloning. 1992;10(5):309–14.

    CAS  PubMed  Google Scholar 

  6. Yee K, Bishop TR, Mather C, Zon LI. Isolation of a novel receptor tyrosine kinase cDNA expressed by developing erythroid progenitors. Blood. 1993;82(4):1335–43.

    CAS  PubMed  Google Scholar 

  7. Hovens CM, Stacker SA, Andres AC, Harpur AG, Ziemiecki A, Wilks AF. RYK, a receptor tyrosine kinase-related molecule with unusual kinase domain motifs. Proc Natl Acad Sci USA. 1992;89(24):11818–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Stacker SA, Hovens CM, Vitali A, Pritchard MA, Baker E, Sutherland GR, et al. Molecular cloning and chromosomal localisation of the human homologue of a receptor related to tyrosine kinases (RYK). Oncogene. 1993;8(5):1347–56.

    CAS  PubMed  Google Scholar 

  9. Yoshikawa S, McKinnon RD, Kokel M, Thomas JB. Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature. 2003;422(6932):583–8.

    CAS  PubMed  Google Scholar 

  10. Patthy L. The WIF module. Trends Biochem Sci. 2000;25(1):12–3.

    CAS  PubMed  Google Scholar 

  11. Bainbridge TW, DeAlmeida VI, Izrael-Tomasevic A, Chalouni C, Pan B, Goldsmith J, et al. Evolutionary divergence in the catalytic activity of the CAM-1, ROR1 and ROR2 kinase domains. PLoS One. 2014;9(7):e102695.

    PubMed Central  PubMed  Google Scholar 

  12. Mendrola JM, Shi F, Park JH, Lemmon MA. Receptor tyrosine kinases with intracellular pseudokinase domains. Biochem Soc Trans. 2013;41(4):1029–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Lee ST, Strunk KM, Spritz RA. A survey of protein tyrosine kinase mRNAs expressed in normal human melanocytes. Oncogene. 1993;8(12):3403–10.

    CAS  PubMed  Google Scholar 

  14. Gough NM, Rakar S, Hovens CM, Wilks A. Localization of two mouse genes encoding the protein tyrosine kinase receptor-related protein RYK. Mamm Genome. 1995;6(4):255–6.

    CAS  PubMed  Google Scholar 

  15. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34.

    CAS  PubMed  Google Scholar 

  16. Caenepeel S, Charydczak G, Sudarsanam S, Hunter T, Manning G. The mouse kinome: discovery and comparative genomics of all mouse protein kinases. Proc Natl Acad Sci USA. 2004;101(32):11707–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Callahan CA, Muralidhar MG, Lundgren SE, Scully AL, Thomas JB. Control of neuronal pathway selection by a Drosophila receptor protein-tyrosine kinase family member. Nature. 1995;376(6536):171–4.

    CAS  PubMed  Google Scholar 

  18. Dura JM, Preat T, Tully T. Identification of linotte, a new gene affecting learning and memory in Drosophila melanogaster. J Neurogenet. 1993;9(1):1–14.

    CAS  PubMed  Google Scholar 

  19. Dura JM, Taillebourg E, Preat T. The Drosophila learning and memory gene linotte encodes a putative receptor tyrosine kinase homologous to the human RYK gene product. FEBS Lett. 1995;370(3):250–4.

    CAS  PubMed  Google Scholar 

  20. Sakurai M, Aoki T, Yoshikawa S, Santschi LA, Saito H, Endo K, et al. Differentially expressed Drl and Drl-2 play opposing roles in Wnt5 signaling during Drosophila olfactory system development. J Neurosci. 2009;29(15):4972–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Oates AC, Bonkovsky JL, Irvine DV, Kelly LE, Thomas JB, Wilks AF. Embryonic expression and activity of doughnut, a second RYK homolog in Drosophila. Mech Dev. 1998;78(1–2):165–9.

    CAS  PubMed  Google Scholar 

  22. Savant-Bhonsale S, Friese M, McCoon P, Montell DJ. A Drosophila derailed homolog, doughnut, expressed in invaginating cells during embryogenesis. Gene. 1999;231(1–2):155–61.

    CAS  PubMed  Google Scholar 

  23. Halford MM, Oates AC, Hibbs ML, Wilks AF, Stacker SA. Genomic structure and expression of the mouse growth factor receptor related to tyrosine kinases (Ryk). J Biol Chem. 1999;274(11):7379–90.

    CAS  PubMed  Google Scholar 

  24. Bonkowsky JL, Thomas JB. Cell-type specific modular regulation of derailed in the Drosophila nervous system. Mech Dev. 1999;82(1–2):181–4.

    CAS  PubMed  Google Scholar 

  25. Harris KE, Beckendorf SK. Different Wnt signals act through the Frizzled and RYK receptors during Drosophila salivary gland migration. Development. 2007;134(11):2017–25.

    CAS  PubMed  Google Scholar 

  26. Kuzin A, Brody T, Moore AW, Odenwald WF. Nerfin-1 is required for early axon guidance decisions in the developing Drosophila CNS. Dev Biol. 2005;277(2):347–65.

    CAS  PubMed  Google Scholar 

  27. Tamagnone L, Partanen J, Armstrong E, Lasota J, Ohgami K, Tazunoki T, et al. The human ryk cDNA sequence predicts a protein containing two putative transmembrane segments and a tyrosine kinase catalytic domain. Oncogene. 1993;8(7):2009–14.

    CAS  PubMed  Google Scholar 

  28. Szafranski K, Schindler S, Taudien S, Hiller M, Huse K, Jahn N, et al. Violating the splicing rules: TG dinucleotides function as alternative 3′ splice sites in U2-dependent introns. Genome Biol. 2007;8(8):R154.

    PubMed Central  PubMed  Google Scholar 

  29. Vorlová S, Rocco G, Lefave CV, Jodelka FM, Hess K, Hastings ML, et al. Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol Cell. 2011;43(6):927–39.

    PubMed Central  PubMed  Google Scholar 

  30. Wang XC, Katso R, Butler R, Hanby AM, Poulsom R, Jones T, et al. H-RYK, an unusual receptor kinase: isolation and analysis of expression in ovarian cancer. Mol Med. 1996;2(2):189–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Kamitori K, Tanaka M, Okuno-Hirasawa T, Kohsaka S. Receptor related to tyrosine kinase RYK regulates cell migration during cortical development. Biochem Biophys Res Commun. 2005;330(2):446–53.

    CAS  PubMed  Google Scholar 

  32. Blakely BD, Bye CR, Fernando CV, Prasad AA, Pasterkamp RJ, Macheda ML, et al. Ryk, a receptor regulating Wnt5a-mediated neurogenesis and axon morphogenesis of ventral midbrain dopaminergic neurons. Stem Cells Dev. 2013;22(15):2132–44.

    CAS  PubMed  Google Scholar 

  33. Halford MM, Armes J, Buchert M, Meskenaite V, Grail D, Hibbs ML, et al. Ryk-deficient mice exhibit craniofacial defects associated with perturbed Eph receptor crosstalk. Nat Genet. 2000;25(4):414–8.

    CAS  PubMed  Google Scholar 

  34. Zhong J, Kim HT, Lyu J, Yoshikawa K, Nakafuku M, Lu W. The Wnt receptor Ryk controls specification of GABAergic neurons versus oligodendrocytes during telencephalon development. Development. 2011;138(3):409–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Andre P, Wang Q, Wang N, Gao B, Schilit A, Halford MM, et al. The Wnt coreceptor Ryk regulates Wnt/planar cell polarity by modulating the degradation of the core planar cell polarity component Vangl2. J Biol Chem. 2012;287(53):44518–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Serfas MS, Tyner AL. Ryk is expressed in a differentiation-specific manner in epithelial tissues and is strongly induced in decidualizing uterine stroma. Oncogene. 1998;17(26):3435–44.

    CAS  PubMed  Google Scholar 

  37. Favre CJ, Mancuso M, Maas K, McLean JW, Baluk P, McDonald DM. Expression of genes involved in vascular development and angiogenesis in endothelial cells of adult lung. Am J Physiol Heart Circ Physiol. 2003;285(5):H1917–38.

    CAS  PubMed  Google Scholar 

  38. Kamitori K, Machide M, Osumi N, Kohsaka S. Expression of receptor tyrosine kinase RYK in developing rat central nervous system. Brain Res Dev Brain Res. 1999;114(1):149–60.

    CAS  PubMed  Google Scholar 

  39. Lyu J, Yamamoto V, Lu W. Cleavage of the Wnt receptor Ryk regulates neuronal differentiation during cortical neurogenesis. Dev Cell. 2008;15(5):773–80.

    CAS  PubMed  Google Scholar 

  40. Lin S, Baye LM, Westfall TA, Slusarski DC. Wnt5b-Ryk pathway provides directional signals to regulate gastrulation movement. J Cell Biol. 2010;190(2):263–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Kim GH, Her JH, Han JK. Ryk cooperates with Frizzled 7 to promote Wnt11-mediated endocytosis and is essential for Xenopus laevis convergent extension movements. J Cell Biol. 2008;182(6):1073–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Zhang B, Tran U, Wessely O. Expression of Wnt signaling components during Xenopus pronephros development. PLoS One. 2011;6(10):e26533.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Bonkowsky JL, Yoshikawa S, O’Keefe DD, Scully AL, Thomas JB. Axon routing across the midline controlled by the Drosophila Derailed receptor. Nature. 1999;402(6761):540–4.

    CAS  PubMed  Google Scholar 

  44. Wouda RR, Bansraj MR, de Jong AW, Noordermeer JN, Fradkin LG. Src family kinases are required for WNT5 signaling through the Derailed/RYK receptor in the Drosophila embryonic central nervous system. Development. 2008;135(13):2277–87.

    CAS  PubMed  Google Scholar 

  45. Carreira VP, Mensch J, Fanara JJ. Body size in Drosophila: genetic architecture, allometries and sexual dimorphism. Heredity. 2009;102(3):246–56.

    CAS  PubMed  Google Scholar 

  46. The modEncode Consortium, Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science. 2010;330(6012):1787–97.

    PubMed Central  Google Scholar 

  47. Inaki M, Yoshikawa S, Thomas JB, Aburatani H, Nose A. Wnt4 is a local repulsive cue that determines synaptic target specificity. Curr Biol. 2007;17(18):1574–9.

    CAS  PubMed  Google Scholar 

  48. Sopko R, Perrimon N. Receptor tyrosine kinases in Drosophila development. Cold Spring Harb Perspect Biol. 2013;5(6).

    Google Scholar 

  49. Fradkin LG, Dura JM, Noordermeer JN. Ryks: new partners for Wnts in the developing and regenerating nervous system. Trends Neurosci. 2009;33(2):84–92.

    PubMed  Google Scholar 

  50. Inoue T, Oz HS, Wiland D, Gharib S, Deshpande R, Hill RJ, et al. C. elegans LIN-18 is a Ryk ortholog and functions in parallel to LIN-17/Frizzled in Wnt signaling. Cell. 2004;118(6):795–806.

    CAS  PubMed  Google Scholar 

  51. Poh WC, Shen Y, Inoue T. Function of the Ryk intracellular domain in C. elegans vulval development. Dev Dyn. 2014;243(9):1074–85.

    CAS  PubMed  Google Scholar 

  52. Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature. 1999;398(6726):431–6.

    CAS  PubMed  Google Scholar 

  53. Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP. PKA: lessons learned after twenty years. Biochim Biophys Acta. 2013;1834(7):1271–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Petrova IM, Lahaye LL, Martianez T, de Jong AW, Malessy MJ, Verhaagen J, et al. Homodimerization of the Wnt receptor DERAILED recruits the Src family kinase SRC64B. Mol Cell Biol. 2013;33(20):4116–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Murphy JM, Zhang Q, Young SN, Reese ML, Bailey FP, Eyers PA, et al. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties. Biochem J. 2014;457(2):323–34.

    CAS  PubMed  Google Scholar 

  56. Kornev AP, Haste NM, Taylor SS, Eyck LF. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Natl Acad Sci USA. 2006;103(47):17783–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Lu W, Yamamoto V, Ortega B, Baltimore D. Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell. 2004;119(1):97–108.

    CAS  PubMed  Google Scholar 

  58. Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov. 2012;11(5):367–83.

    CAS  PubMed  Google Scholar 

  59. Halford MM, Macheda ML, Parish CL, Takano EA, Fox S, Layton D, et al. A fully human inhibitory monoclonal antibody to the Wnt receptor RYK. PLoS One. 2013;8(9):e75447.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Halford MM, Stacker SA. Revelations of the RYK receptor. Bioessays. 2001;23(1):34–45.

    CAS  PubMed  Google Scholar 

  61. Malinauskas T, Aricescu AR, Lu W, Siebold C, Jones EY. Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat Struct Mol Biol. 2011;18(8):886–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Lyu J, Wesselschmidt RL, Lu W. Cdc37 regulates Ryk signaling by stabilizing the cleaved Ryk intracellular domain. J Biol Chem. 2009;284(19):12940–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Tourette C, Farina F, Vazquez-Manrique RP, Orfila AM, Voisin J, Hernandez S, et al. The Wnt receptor Ryk reduces neuronal and cell survival capacity by repressing FOXO activity during the early phases of mutant Huntingtin pathogenicity. PLoS Biol. 2014;12(6):e1001895.

    PubMed Central  PubMed  Google Scholar 

  64. Struhl G, Adachi A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol Cell. 2000;6(3):625–36.

    CAS  PubMed  Google Scholar 

  65. Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LaPlant Q, et al. Nicastrin functions as a γ-secretase-substrate receptor. Cell. 2005;122(3):435–47.

    CAS  PubMed  Google Scholar 

  66. Hemming ML, Elias JE, Gygi SP, Selkoe DJ. Proteomic profiling of γ-secretase substrates and mapping of substrate requirements. PLoS Biol. 2008;6(10):e257.

    PubMed Central  PubMed  Google Scholar 

  67. De Strooper B, Annaert W. Novel research horizons for presenilins and γ-secretases in cell biology and disease. Annu Rev Cell Dev Biol. 2010;26:235–60.

    PubMed  Google Scholar 

  68. Gobin B, Moriceau G, Ory B, Charrier C, Brion R, Blanchard F, et al. Imatinib mesylate exerts anti-proliferative effects on osteosarcoma cells and inhibits the tumour growth in immunocompetent murine models. PLoS One. 2014;9(3):e90795.

    PubMed Central  PubMed  Google Scholar 

  69. Berndt JD, Aoyagi A, Yang P, Anastas JN, Tang L, Moon RT. Mindbomb 1, an E3 ubiquitin ligase, forms a complex with RYK to activate Wnt/β-catenin signaling. J Cell Biol. 2011;194(5):737–50.

    PubMed Central  PubMed  Google Scholar 

  70. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 2011;44(2):325–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Moffat LL, Robinson RE, Bakoulis A, Clark SG. The conserved transmembrane RING finger protein PLR-1 downregulates Wnt signaling by reducing Frizzled, Ror and Ryk cell-surface levels in C. elegans. Development. 2014;141(3):617–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. de Lau W, Peng WC, Gros P, Clevers H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev. 2014;28(4):305–16.

    PubMed Central  PubMed  Google Scholar 

  73. Huse M, Kuriyan J. The conformational plasticity of protein kinases. Cell. 2002;109(3):275–82.

    CAS  PubMed  Google Scholar 

  74. Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci USA. 2010;107(17):7692–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Mukherjee K, Sharma M, Urlaub H, Bourenkov GP, Jahn R, Südhof TC, et al. CASK functions as a Mg2+-independent neurexin kinase. Cell. 2008;133(2):328–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, Jensen ON, et al. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nat Struct Mol Biol. 2011;18(9):971–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Zeqiraj E, van Aalten DM. Pseudokinases― remnants of evolution or key allosteric regulators? Curr Opin Struct Biol. 2010;20(6):772–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR. Emerging roles of pseudokinases. Trends Cell Biol. 2006;16(9):443–52.

    CAS  PubMed  Google Scholar 

  79. Katso RM, Manek S, Biddolph S, Whittaker R, Charnock MF, Wells M, et al. Overexpression of H-Ryk in mouse fibroblasts confers transforming ability in vitro and in vivo: correlation with up-regulation in epithelial ovarian cancer. Cancer Res. 1999;59(10):2265–70.

    CAS  PubMed  Google Scholar 

  80. Watanabe A, Akita S, Tin NT, Natsume N, Nakano Y, Niikawa N, et al. A mutation in RYK is a genetic factor for nonsyndromic cleft lip and palate. Cleft Palate Craniofac J. 2006;43(3):310–6.

    PubMed  Google Scholar 

  81. Carrera AC, Alexandrov K, Roberts TM. The conserved lysine of the catalytic domain of protein kinases is actively involved in the phosphotransfer reaction and not required for anchoring ATP. Proc Natl Acad Sci USA. 1993;90(2):442–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. McCormick JA, Ellison DH. The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev. 2011;91(1):177–219.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Yoshikawa S, Bonkowsky JL, Kokel M, Shyn S, Thomas JB. The Derailed guidance receptor does not require kinase activity in vivo. J Neurosci. 2001;21(1):RC119.

    CAS  PubMed  Google Scholar 

  84. Yao Y, Wu Y, Yin C, Ozawa R, Aigaki T, Wouda RR, et al. Antagonistic roles of Wnt5 and the Drl receptor in patterning the Drosophila antennal lobe. Nat Neurosci. 2007;10(11):1423–32.

    CAS  PubMed  Google Scholar 

  85. Taillebourg E, Moreau-Fauvarque C, Delaval K, Dura JM. In vivo evidence for a regulatory role of the kinase activity of the linotte/derailed receptor tyrosine kinase, a Drosophila Ryk ortholog. Dev Genes Evol. 2005;215(3):158–63.

    CAS  PubMed  Google Scholar 

  86. Kornev AP, Taylor SS. Pseudokinases: functional insights gleaned from structure. Structure. 2009;17(1):5–7.

    CAS  PubMed  Google Scholar 

  87. Carpenter G, Liao HJ. Receptor tyrosine kinases in the nucleus. Cold Spring Harb Perspect Biol. 2013;5(10):a008979.

    PubMed  Google Scholar 

  88. Liu Y, Shi J, Lu CC, Wang ZB, Lyuksyutova AI, Song XJ, et al. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci. 2005;8(9):1151–9.

    CAS  PubMed  Google Scholar 

  89. Kamitori K, Machide M, Tomita K, Nakafuku M, Kohsaka S. Cell-type-specific expression of protein tyrosine kinase-related receptor RYK in the central nervous system of the rat. Brain Res Mol Brain Res. 2002;104(2):255–66.

    CAS  PubMed  Google Scholar 

  90. Li L, Hutchins BI, Kalil K. Wnt5a induces simultaneous cortical axon outgrowth and repulsive axon guidance through distinct signaling mechanisms. J Neurosci. 2009;29(18):5873–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB, et al. The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci. 2006;26(21):5840–8.

    CAS  PubMed  Google Scholar 

  92. Povinelli BJ, Nemeth MJ. Wnt5a regulates hematopoietic stem cell proliferation and repopulation through the Ryk receptor. Stem cells. 2014;32(1):105–15.

    CAS  PubMed  Google Scholar 

  93. de Graaf CA, Kauppi M, Baldwin T, Hyland CD, Metcalf D, Willson TA, et al. Regulation of hematopoietic stem cells by their mature progeny. Proc Natl Acad Sci USA. 2010;107(50):21689–94.

    PubMed Central  PubMed  Google Scholar 

  94. Forsberg EC, Passegue E, Prohaska SS, Wagers AJ, Koeva M, Stuart JM, et al. Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells. PLoS One. 2010;5(1):e8785.

    PubMed Central  PubMed  Google Scholar 

  95. Liebl FL, Wu Y, Featherstone DE, Noordermeer JN, Fradkin L, Hing H. Derailed regulates development of the Drosophila neuromuscular junction. Dev Neurobiol. 2008;68(2):152–65.

    PubMed Central  PubMed  Google Scholar 

  96. Callahan CA, Bonkovsky JL, Scully AL, Thomas JB. derailed is required for muscle attachment site selection in Drosophila. Development. 1996;122(9):2761–7.

    CAS  PubMed  Google Scholar 

  97. Grillenzoni N, Flandre A, Lasbleiz C, Dura JM. Respective roles of the DRL receptor and its ligand WNT5 in Drosophila mushroom body development. Development. 2007;134(17):3089–97.

    CAS  PubMed  Google Scholar 

  98. Hitier R, Simon AF, Savarit F, Preat T. no-bridge and linotte act jointly at the interhemispheric junction to build up the adult central brain of Drosophila melanogaster. Mech Dev. 2000;99(1–2):93–100.

    CAS  PubMed  Google Scholar 

  99. Simon AF, Boquet I, Synguelakis M, Preat T. The Drosophila putative kinase Linotte (Derailed) prevents central brain axons from converging on a newly described interhemispheric ring. Mech Dev. 1998;76(1–2):45–55.

    CAS  PubMed  Google Scholar 

  100. Wu Y, Helt JC, Wexler E, Petrova IM, Noordermeer JN, Fradkin LG, et al. Wnt5 and Drl/Ryk gradients pattern the Drosophila olfactory dendritic map. J Neurosci. 2014;34(45):14961–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Bazan JF, Janda CY, Garcia KC. Structural architecture and functional evolution of Wnts. Dev Cell. 2012;23(2):227–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Willert K, Nusse R. Wnt proteins. Cold Spring Harb Perspect Biol. 2012;4(9):a007864.

    PubMed Central  PubMed  Google Scholar 

  103. Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol. 2013;5(3):a015081.

    PubMed Central  PubMed  Google Scholar 

  104. Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 2012;13(12):767–79.

    CAS  PubMed  Google Scholar 

  105. Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009;10(7):468–77.

    CAS  PubMed  Google Scholar 

  106. Nusse R, Varmus H. Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO J. 2012;31(12):2670–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192–205.

    CAS  PubMed  Google Scholar 

  108. Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13(7):513–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13(1):11–26.

    CAS  PubMed  Google Scholar 

  110. Hernandez AR, Klein AM, Kirschner MW. Kinetic responses of β-catenin specify the sites of Wnt control. Science. 2012;338(6112):1337–40.

    CAS  PubMed  Google Scholar 

  111. van Amerongen R. Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol. 2012;4(10).

    Google Scholar 

  112. Schmitt AM, Shi J, Wolf AM, Lu CC, King LA, Zou Y. Wnt-Ryk signalling mediates medial-lateral retinotectal topographic mapping. Nature. 2006;439(7072):31–7.

    CAS  PubMed  Google Scholar 

  113. Feldheim DA, O’Leary DD. Visual map development: bidirectional signaling, bifunctional guidance molecules, and competition. Cold Spring Harb Perspect Biol. 2010;2(11):a001768.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Lyuksyutova AI, Lu CC, Milanesio N, King LA, Guo N, Wang Y, et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science. 2003;302(5652):1984–8.

    CAS  PubMed  Google Scholar 

  115. Hutchins BI, Li L, Kalil K. Wnt/calcium signaling mediates axon growth and guidance in the developing corpus callosum. Dev Neurobiol. 2011;71(4):269–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Blakely BD, Bye CR, Fernando CV, Horne MK, Macheda ML, Stacker SA, et al. Wnt5a regulates midbrain dopaminergic axon growth and guidance. PLoS One. 2011;6(3):e18373.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Simons M, Mlodzik M. Planar cell polarity signaling: from fly development to human disease. Annu Rev Genet. 2008;42:517–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Devenport D. The cell biology of planar cell polarity. J Cell Biol. 2014;207(2):171–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Macheda ML, Sun WW, Kugathasan K, Hogan BM, Bower NI, Halford MM, et al. The Wnt receptor Ryk plays a role in mammalian planar cell polarity signaling. J Biol Chem. 2012;287(35):29312–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Fradkin LG, van Schie M, Wouda RR, de Jong A, Kamphorst JT, Radjkoemar-Bansraj M, et al. The Drosophila Wnt5 protein mediates selective axon fasciculation in the embryonic central nervous system. Dev Biol. 2004;272(2):362–75.

    CAS  PubMed  Google Scholar 

  121. Fradkin LG, Noordermeer JN, Nusse R. The Drosophila Wnt protein DWnt-3 is a secreted glycoprotein localized on the axon tracts of the embryonic CNS. Dev Biol. 1995;168(1):202–13.

    CAS  PubMed  Google Scholar 

  122. Bolwig GM, Del Vecchio M, Hannon G, Tully T. Molecular cloning of linotte in Drosophila: a novel gene that functions in adults during associative learning. Neuron. 1995;15(4):829–42.

    CAS  PubMed  Google Scholar 

  123. Singh AP, VijayRaghavan K, Rodrigues V. Dendritic refinement of an identified neuron in the Drosophila CNS is regulated by neuronal activity and Wnt signaling. Development. 2010;137(8):1351–60.

    CAS  PubMed  Google Scholar 

  124. Vosshall LB, Stocker RF. Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci. 2007;30:505–33.

    CAS  PubMed  Google Scholar 

  125. Luo L, Flanagan JG. Development of continuous and discrete neural maps. Neuron. 2007;56(2):284–300.

    CAS  PubMed  Google Scholar 

  126. Lahaye LL, Wouda RR, de Jong AW, Fradkin LG, Noordermeer JN. WNT5 interacts with the Ryk receptors Doughnut and Derailed to mediate muscle attachment site selection in Drosophila melanogaster. PLoS One. 2012;7(3):e32297.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Speicher S, Garcia-Alonso L, Carmena A, Martin-Bermudo MD, de la Escalera S, Jimenez F. Neurotactin functions in concert with other identified CAMs in growth cone guidance in Drosophila. Neuron. 1998;20(2):221–33.

    CAS  PubMed  Google Scholar 

  128. Ferguson EL, Horvitz HR. Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. Genetics. 1985;110(1):17–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Gupta BP, Hanna-Rose W, Sternberg PW. Morphogenesis of the vulva and the vulval-uterine connection. WormBook. 2012:1–20.

    Google Scholar 

  130. Ferguson EL, Sternberg PW, Horvitz HR. A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature. 1987;326(6110):259–67.

    CAS  PubMed  Google Scholar 

  131. Gleason JE, Szyleyko EA, Eisenmann DM. Multiple redundant Wnt signaling components function in two processes during C. elegans vulval development. Dev Biol. 2006;298(2):442–57.

    CAS  PubMed  Google Scholar 

  132. Green JL, Inoue T, Sternberg PW. Opposing Wnt pathways orient cell polarity during organogenesis. Cell. 2008;134(4):646–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Zinovyeva AY, Yamamoto Y, Sawa H, Forrester WC. Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development. Genetics. 2008;179(3):1357–71.

    PubMed Central  PubMed  Google Scholar 

  134. Zheng M, Messerschmidt D, Jungblut B, Sommer RJ. Conservation and diversification of Wnt signaling function during the evolution of nematode vulva development. Nat Genet. 2005;37(3):300–4.

    CAS  PubMed  Google Scholar 

  135. Tian H, Schlager B, Xiao H, Sommer RJ. Wnt signaling induces vulva development in the nematode Pristionchus pacificus. Curr Biol. 2008;18(2):142–6.

    CAS  PubMed  Google Scholar 

  136. Wang X, Sommer RJ. Antagonism of LIN-17/Frizzled and LIN-18/Ryk in nematode vulva induction reveals evolutionary alterations in core developmental pathways. PLoS Biol. 2011;9(7):e1001110.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Finger C, Escher C, Schneider D. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci Signal. 2009;2(89):ra56.

    Google Scholar 

  138. Nicolaï M, Lasbleiz C, Dura JM. Gain-of-function screen identifies a role of the Src64 oncogene in Drosophila mushroom body development. J Neurobiol. 2003;57(3):291–302.

    PubMed  Google Scholar 

  139. Orioli D, Henkemeyer M, Lemke G, Klein R, Pawson T. Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J. 1996;15(22):6035–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Mandal AK, Lee P, Chen JA, Nillegoda N, Heller A, DiStasio S, et al. Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation. J Cell Biol. 2007;176(3):319–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MM, Prodromou C, et al. Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell. 2006;23(5):697–707.

    CAS  PubMed  Google Scholar 

  142. Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010;8:8.

    PubMed Central  PubMed  Google Scholar 

  143. Buchert M, Poon C, King JA, Baechi T, D’Abaco G, Hollande F, et al. AF6/s-afadin is a dual residency protein and localizes to a novel subnuclear compartment. J Cell Physiol. 2007;210(1):212–23.

    CAS  PubMed  Google Scholar 

  144. Kim GH, Park EC, Lee H, Na HJ, Choi SC, Han JK. β-Arrestin 1 mediates non-canonical Wnt pathway to regulate convergent extension movements. Biochem Biophys Res Commun. 2013;435(2):182–7.

    CAS  PubMed  Google Scholar 

  145. Hitier R, Chaminade M, Preat T. The Drosophila castor gene is involved in postembryonic brain development. Mech Dev. 2001;103(1–2):3–11.

    CAS  PubMed  Google Scholar 

  146. Sawa H. Control of cell polarity and asymmetric division in C. elegans. Curr Top Dev Biol. 2012;101:55–76.

    CAS  PubMed  Google Scholar 

  147. Deshpande R, Inoue T, Priess JR, Hill RJ. lin-17/Frizzled and lin-18 regulate POP-1/TCF-1 localization and cell type specification during C. elegans vulval development. Dev Biol. 2005;278(1):118–29.

    CAS  PubMed  Google Scholar 

  148. Li L, Fothergill T, Hutchins BI, Dent EW, Kalil K. Wnt5a evokes cortical axon outgrowth and repulsive guidance by tau mediated reorganization of dynamic microtubules. Dev Neurobiol. 2014;74(8):797–817.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Miyashita T, Koda M, Kitajo K, Yamazaki M, Takahashi K, Kikuchi A, et al. Wnt-Ryk signaling mediates axon growth inhibition and limits functional recovery after spinal cord injury. J Neurotrauma. 2009;26(7):955–64.

    PubMed  Google Scholar 

  150. Liu Y, Wang X, Lu CC, Kerman R, Steward O, Xu XM, et al. Repulsive Wnt signaling inhibits axon regeneration after CNS injury. J Neurosci. 2008;28(33):8376–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Gonzalez P, Fernandez-Martos CM, Arenas E, Rodriguez FJ. The Ryk receptor is expressed in glial and fibronectin-expressing cells after spinal cord injury. J Neurotrauma. 2013;30(10):806–17.

    PubMed Central  PubMed  Google Scholar 

  152. Li X, Li YH, Yu S, Liu Y. Upregulation of Ryk expression in rat dorsal root ganglia after peripheral nerve injury. Brain Res Bull. 2008;77(4):178–84.

    CAS  PubMed  Google Scholar 

  153. Hollis 2nd ER, Zou Y. Reinduced Wnt signaling limits regenerative potential of sensory axons in the spinal cord following conditioning lesion. Proc Natl Acad Sci USA. 2012;109(36):14663–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Hendricks M, Mathuru AS, Wang H, Silander O, Kee MZ, Jesuthasan S. Disruption of Esrom and Ryk identifies the roof plate boundary as an intermediate target for commissure formation. Mol Cell Neurosci. 2008;37(2):271–83.

    CAS  PubMed  Google Scholar 

  155. Micci F, Panagopoulos I, Haugom L, Andersen HK, Tjonnfjord GE, Beiske K, et al. t(3;21)(q22;q22) leading to truncation of the RYK gene in atypical chronic myeloid leukemia. Cancer Lett. 2009;277(2):205–11.

    Google Scholar 

  156. Muller-Tidow C, Schwable J, Steffen B, Tidow N, Brandt B, Becker K, et al. High-throughput analysis of genome-wide receptor tyrosine kinase expression in human cancers identifies potential novel drug targets. Clin Cancer Res. 2004;10(4):1241–9.

    PubMed  Google Scholar 

  157. Hirano H, Yonezawa H, Yunoue S, Habu M, Uchida H, Yoshioka T, et al. Immunoreactivity of Wnt5a, Fzd2, Fzd6, and Ryk in glioblastoma: evaluative methodology for DAB chromogenic immunostaining. Brain Tumor Pathol. 2013;31(2):85–93.

    PubMed  Google Scholar 

  158. Katso RM, Manek S, Ganjavi H, Biddolph S, Charnock MF, Bradburn M, et al. Overexpression of H-Ryk in epithelial ovarian cancer: prognostic significance of receptor expression. Clin Cancer Res. 2000;6(8):3271–81.

    CAS  PubMed  Google Scholar 

  159. Anastas JN, Kulikauskas RM, Tamir T, Rizos H, Long GV, von Euw EM, et al. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J Clin Invest. 2014;124(7):2877–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Wu X, Northcott PA, Dubuc A, Dupuy AJ, Shih DJ, Witt H, et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature. 2012;482(7386):529–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Quintana RM, Dupuy AJ, Bravo A, Casanova ML, Alameda JP, Page A, et al. A transposon-based analysis of gene mutations related to skin cancer development. J Invest Dermatol. 2013;133(1):239–48.

    CAS  PubMed  Google Scholar 

  162. Jugessur A, Shi M, Gjessing HK, Lie RT, Wilcox AJ, Weinberg CR, et al. Genetic determinants of facial clefting: analysis of 357 candidate genes using two national cleft studies from Scandinavia. PLoS One. 2009;4(4):e5385.

    PubMed Central  PubMed  Google Scholar 

  163. Carter TC, Molloy AM, Pangilinan F, Troendle JF, Kirke PN, Conley MR, et al. Testing reported associations of genetic risk factors for oral clefts in a large Irish study population. Birth Defects Res A Clin Mol Teratol. 2010;88(2):84–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Afzal AR, Rajab A, Fenske CD, Oldridge M, Elanko N, Ternes-Pereira E, et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet. 2000;25(4):419–22.

    CAS  PubMed  Google Scholar 

  165. van Bokhoven H, Celli J, Kayserili H, van Beusekom E, Balci S, Brussel W, et al. Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet. 2000;25(4):423–6.

    PubMed  Google Scholar 

  166. Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, Robu ME, et al. WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn. 2010;239(1):327–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Mazzeu JF, Pardono E, Vianna-Morgante AM, Richieri-Costa A, Ae Kim C, Brunoni D, et al. Clinical characterization of autosomal dominant and recessive variants of Robinow syndrome. Am J Med Genet A. 2007;143(4):320–5.

    PubMed  Google Scholar 

  168. Mazzeu JF. RYK is not mutated in autosomal dominant Robinow syndrome. J Biol Chem. 2013;288(4):2905.

    PubMed Central  PubMed  Google Scholar 

  169. Andre P, Yang Y. Reply to Mazzeu: Human mutations in RYK might cause Robinow syndrome. J Biol Chem. 2013;288(4):2906.

    PubMed Central  PubMed  Google Scholar 

  170. Fromigue O, Hay E, Barbara A, Marie PJ. Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signaling in osteoblast differentiation induced by strontium ranelate. J Biol Chem. 2010;285(33):25251–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Santiago F, Oguma J, Brown AM, Laurence J. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir. Biochem Biophys Res Commun. 2012;417(1):223–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Kumawat K, Menzen MH, Bos IS, Baarsma HA, Borger P, Roth M, et al. Noncanonical WNT-5A signaling regulates TGF-β-induced extracellular matrix production by airway smooth muscle cells. FASEB J. 2013;27(4):1631–43.

    CAS  PubMed  Google Scholar 

  173. Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K, et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G39–49.

    CAS  PubMed  Google Scholar 

  174. Tury A, Tolentino K, Zou Y. Altered expression of atypical PKC and Ryk in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Dev Neurobiol. 2014;74(8):839–50.

    CAS  PubMed  Google Scholar 

  175. Lum L, Clevers H. The unusual case of Porcupine. Science. 2012;337(6097):922–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Google Scholar 

  177. Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 2012;22(11):2109–19.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44(6):694–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature. 2010;466(7308):869–73.

    CAS  PubMed  Google Scholar 

  180. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.

    Google Scholar 

  181. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat. 2000;15(1):7–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Halford .

Editor information

Editors and Affiliations

RYK receptor at a glance

RYK receptor at a glance

 

Humana

Mouseb

Gene location

3q22

9D1

Gene size (bp)

93,609

≈73 kb

Intron/exon numbers

14/15

14/15

mRNA size (5′, ORF, 3′)

2,942 bp

3,267 bp

Amino acid residues

610 (isoform 1 precursor), 607 (isoform 2 precursor), 273 (isoform 3 precursor)

594 (isoform 1 precursor), 591 (isoform 2 precursor), 475 (isoform 3 precursor)

Mature protein (predicted; kDa)

68 (isoform 1 precursor)

66 (isoform 1 precursor)

Posttranslational modifications

N-linked glycosylation, 5 (N139, N174, N178, N182, N209, N291)

Phosphorylation

Polyubiquitylation

Proteolytic cleavages

N-linked glycosylation, 5 (N123, N158, N162, N166, N193)

Phosphorylation

Polyubiquitylation

Proteolytic cleavages

Domains

WIF (66–194)

Transmembrane helix (228–255)

Protein tyrosine kinase (333–606)

WIF (50–178)

Transmembrane helix (212–239)

Protein tyrosine kinase (317–590)

Extracellular ligands

Wnts

Wnts

Known dimerizing partners

Self

EphB2

EphB3

Fzd8

Pathways activated

Wnt/β-catenin

Wnt/calcium dependent

Wnt/planar cell polarity

AKT

Wnt/β-catenin

Wnt/calcium dependent

Wnt/planar cell polarity

Tissues expressed (mRNA)

Adipose, adrenal gland, blood cells, brain, breast, cerebellum, colon

Colorectal adenocarcinoma

Endothelial cells, fallopian tube, heart, kidney, liver, lung, lymph node, ovary

Ovarian carcinoma, pancreas

Placenta, prefrontal cortex

Prostate, retina, salivary gland, skeletal muscle

Skin, small intestine, smooth muscle, spleen, spinal cord

Testis, thymus, thyroid

Tongue, tonsil, thyroid, uterus

Adipose, adrenal gland, bladder, bone, bone marrow

Brain, cerebellum, colon

Embryo, whole

Embryo, heart, brain, spinal cord, small intestine, eye, hair follicle

Hematopoietic stem cells

Hippocampus, kidney, liver

Lung, lymph node, mammary gland, ovary, pancreas

Placenta, prostate, retina

Salivary gland, skeletal muscle

Skin, small intestine, spleen

Stomach, striatum, testis, tongue, thymus, uterus

Human diseases

Cleft lip/palate, cancer (melanoma)

Cancer (medulloblastoma, non-melanoma skin)

Knockout mouse phenotype

Neonatal death on day of birth

Cleft of the secondary palate

Growth retardation

Craniofacial defects

Reduced long bone length

Defective callosal axon guidance

Reduced neuron differentiation and increased oligodendrocyte differentiation in forebrain

Open neural tube (craniorachischisis; interaction with Vangl2)

Open ventral body wall (interaction with Vangl2)

Defective forelimb digit formation (interaction with Vangl2)

Sternum and rib defects (interaction with Vangl2)

Defective polarity of hair cells in cochlea (interaction with Vangl2)

Additional row of hair cells in middle cochlea (interaction with Vangl2)

Eyelid closure defects (interaction with Vangl2)

  1. aHuman RYK protein numbering is based on the isoform 1 precursor (NCBI reference sequence NP_001005861.1)
  2. bMouse Ryk protein numbering is based on the isoform 1 precursor (NCBI reference sequence NP_038677.3)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Halford, M.M., Macheda, M.L., Stacker, S.A. (2015). The RYK Receptor Family. In: Wheeler, D., Yarden, Y. (eds) Receptor Tyrosine Kinases: Family and Subfamilies. Springer, Cham. https://doi.org/10.1007/978-3-319-11888-8_15

Download citation

Publish with us

Policies and ethics