Skip to main content

Automatic 3D Multiorgan Segmentation via Clustering and Graph Cut Using Spatial Relations and Hierarchically-Registered Atlases

  • Conference paper
  • First Online:
Medical Computer Vision: Algorithms for Big Data (MCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8848))

Included in the following conference series:

Abstract

We propose a generic method for automatic multiple-organ segmentation based on a multilabel Graph Cut optimization approach which uses location likelihood of organs and prior information of spatial relationships between them. The latter is derived from shortest-path constraints defined on the adjacency graph of structures and the former is defined by probabilistic atlases learned from a training dataset. Organ atlases are mapped to the image by a fast (2+1)D hierarchical registration method based on SURF keypoints. Registered atlases are furthermore used to derive organ intensity likelihoods. Prior and likelihood models are then introduced in a joint centroidal Voronoi image clustering and Graph Cut multiobject segmentation framework. Qualitative and quantitative evaluation has been performed on contrast-enhanced CT images from the Visceral Benchmark dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Blume, A., Chun, W., Kogan, D., Kokkevis, V., Weber, N., Petterson, R.W., Zeiger, R.: Google body: 3D human anatomy in the browser. In: ACM SIGGRAPH 2011 Talks, pp. 19:1–19:1 (2011)

    Google Scholar 

  3. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006)

    Article  Google Scholar 

  4. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  5. Dardenne, J., Valette, S., Siauve, N., Burais, N., Prost, R.: Variational tetraedral mesh generation from discrete volume data. Vis. Comput. 25(5), 401–410 (2009)

    Article  Google Scholar 

  6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  7. Fouquier, G., Atif, J., Bloch, I.: Sequential model-based segmentation and recognition of image structures driven by visual features and spatial relations. Comput. Vis. Image Underst. 116(1), 146–165 (2012)

    Article  Google Scholar 

  8. Hanbury, A., Müller, H., Langs, G., Weber, M.A., Menze, B.H., Fernandez, T.S.: Bringing the algorithms to the data: cloud–based benchmarking for medical image analysis. In: Catarci, T., Forner, P., Hiemstra, D., Peñas, A., Santucci, G. (eds.) CLEF 2012. LNCS, vol. 7488, pp. 24–29. Springer, Heidelberg (2012)

    Google Scholar 

  9. Iglesias, J.E., Konukoglu, E., Montillo, A., Tu, Z., Criminisi, A.: Combining generative and discriminative models for semantic segmentation of CT scans via active learning. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 25–36. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Kéchichian, R., Valette, S., Desvignes, M., Prost, R.: Shortest-path constraints for 3d multi-object semi-automatic segmentation via clustering and graph cut. IEEE Trans. Image Process. 22(11), 4224–4236 (2013)

    Article  MathSciNet  Google Scholar 

  11. Kohlberger, T., Sofka, M., Zhang, J., Birkbeck, N., Wetzl, J., Kaftan, J., Declerck, J., Zhou, S.K.: Automatic multi-organ segmentation using learning-based segmentation and level set optimization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 338–345. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  13. Lester, H., Arridge, S.R.: A survey of hierarchical non-linear medical image registration. Pattern Recogn. 32(1), 129–149 (1999)

    Article  Google Scholar 

  14. Linguraru, M.G., Pura, J.A., Pamulapati, V., Summers, R.M.: Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT. Med. Image Anal. 16(4), 904–914 (2012)

    Article  Google Scholar 

  15. Lynch, R., Pitson, G., Ball, D., Claude, L., Sarrut, D.: Computed tomographic atlas for the new international lymph node map for lung cancer: a radiation oncologist perspective. Pract. Radiat. Oncol. 3(1), 54–66 (2013)

    Article  Google Scholar 

  16. Okada, T., Yoshida, Y., Hori, M., Summers, R.M., Chen, Y.W., Tomiyama, N., Sato, Y.: Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. In: Proceedings of the 3rd International Conference on Abdominal Imaging: Computational and Clinical Applications, pp. 173–180 (2012)

    Google Scholar 

  17. Seifert, S., Barbu, A., Zhou, S.K., Liu, D., Feulner, J., Huber, M., Suehling, M., Cavallaro, A., Comaniciu, D.: Hierarchical parsing and semantic navigation of full body CT data. In: SPIE Medical Imaging, Lake Buena Vista, FL, USA, Feb 2009

    Google Scholar 

  18. Song, Z., Tustison, N., Avants, B., Gee, J.: Adaptive graph cuts with tissue priors for brain MRI segmentation. In: IEEE ISBI, pp. 762–765, Apr 2006

    Google Scholar 

  19. Vandemeulebroucke, J., Sarrut, D., Clarysse, P.: Point-validated pixel-based breathing thorax model. In: International Conference on the Use of Computers in Radiation Therapy (ICCR), pp. 195–199. Toronto, Canada, Jun 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razmig Kéchichian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kéchichian, R., Valette, S., Sdika, M., Desvignes, M. (2014). Automatic 3D Multiorgan Segmentation via Clustering and Graph Cut Using Spatial Relations and Hierarchically-Registered Atlases. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2014. Lecture Notes in Computer Science(), vol 8848. Springer, Cham. https://doi.org/10.1007/978-3-319-13972-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13972-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13971-5

  • Online ISBN: 978-3-319-13972-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics