Skip to main content

Role of the Circadian Clock in Cold Acclimation and Winter Dormancy in Perennial Plants

  • Chapter
  • First Online:
Advances in Plant Dormancy

Abstract

Seasonal variation is a strong cue directing the growth and development of plants. It is particularly important for perennials growing in temperate and boreal regions where woody plants must become dormant to survive freezing winter temperatures. Shortening of the photoperiod induces growth cessation, bud set and a first degree of cold acclimation in most woody plants. The subsequent drop in temperature then produces a greater tolerance to cold and, in deciduous trees, leaf senescence and fall. Trees must time their periods of dormancy accurately with their environment. Circadian clocks underlie this ability, allowing organisms to predict regular, daily changes in their environment as well as longer term seasonal changes. This chapter provides an update on the plant clock in a model annual, thale cress (Arabidopsis thaliana), and further summarizes recent advances about the clock in perennial plants and its involvement in their annual growth cycles, which allows trees to withstand cold and freezing temperatures. Moreover, we outline our views on areas where future work on the circadian clock is necessary to gain insight into the life of a tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

LL:

Continuous light

CDL:

Critical daylength

EC:

Evening complex

LD:

Long day

QTL:

Quantitative trait loci

SD:

Short day

TTFL:

Transcriptional–translational feedback loops

ZT:

Zeitgeber time

References

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274. doi:10.1007/s00299-006-0204-8

    CAS  PubMed  Google Scholar 

  • Alabadi D, Oyama T, Yanovsky MJ et al (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883. doi:10.1126/science.1061320

    CAS  PubMed  Google Scholar 

  • Alabadí D, Yanovsky MJ, Mas P et al (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol 12:757–761

    PubMed  Google Scholar 

  • Allona I, Ramos A, Ibáñez C et al (2008) Molecular control of winter dormancy establishment in trees: a review. Span J Agric Res 6:201–10. doi:10.5424/sjar/200806S1-389

    Google Scholar 

  • Artlip TS, Wisniewski ME, Bassett CL, Norelli JL (2013) CBF gene expression in peach leaf and bark tissues is gated by a circadian clock. Tree Physiol 33:866–877. doi:10.1093/treephys/tpt056

    CAS  PubMed  Google Scholar 

  • Azeez A, Miskolczi P, Tylewicz S, Bhalerao RP (2014) A tree ortholog of APETALA1 mediates photoperiodic control of seasonal growth. Curr Biol 24:717–724. doi:10.1016/j.cub.2014.02.037

    CAS  PubMed  Google Scholar 

  • Banerjee R, Batschauer A (2005) Plant blue-light receptors. Planta 220:498–502. doi:10.1007/s00425-004-1418-z

    CAS  PubMed  Google Scholar 

  • Bastow R, Mylne JS, Lister C et al (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167. doi:10.1038/nature02269

    CAS  PubMed  Google Scholar 

  • Benedict C, Skinner JS, Meng R et al (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272

    CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Ibáñez C, Acebo P et al (2011) Identification of a homolog of Arabidopsis DSP4 (SEX4) in chestnut: its induction and accumulation in stem amyloplasts during winter or in response to the cold. Plant Cell Environ 34:1693–1704. doi:10.1111/j.1365-3040.2011.02365.x

    CAS  PubMed  Google Scholar 

  • Bieniawska Z, Espinoza C, Schlereth A et al (2008) Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol 147:263–279. doi:10.1104/pp.108.118059

    PubMed Central  CAS  PubMed  Google Scholar 

  • Birol I, Raymond A, Jackman SD et al (2013) Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492–1497. doi:10.1093/bioinformatics/btt178

    PubMed Central  CAS  PubMed  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L et al (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043. doi:10.1126/science.1126038

    PubMed  Google Scholar 

  • Borchert R, Renner SS, Calle Z et al (2005) Photoperiodic induction of synchronous flowering near the Equator. Nature 433:627–629. doi:10.1038/nature03259

    CAS  PubMed  Google Scholar 

  • Carbonell-Bejerano P, Rodríguez V, Royo C et al (2014) Circadian oscillatory transcriptional programs in grapevine ripening fruits. BMC Plant Biol 14:78. doi:10.1186/1471-2229-14-78

    PubMed Central  PubMed  Google Scholar 

  • Carre IA (2002) MYB transcription factors in the Arabidopsis circadian clock. J Exp Bot 53:1551–1557. doi:10.1093/jxb/erf027

    CAS  PubMed  Google Scholar 

  • Chiara Magnone M, Jacobmeier B, Bertolucci C et al (2005) Circadian expression of the clock gene Per2 is altered in the ruin lizard (Podarcis sicula) when temperature changes. Mol Brain Res 133:281–285. doi:10.1016/j.molbrainres.2004.10.014

    CAS  Google Scholar 

  • Chow BY, Sanchez SE, Breton G et al (2014) Transcriptional regulation of LUX by CBF1 mediates cold input to the circadian clock in Arabidopsis. Curr Biol 24:1518–1524. doi:10.1016/j.cub.2014.05.029

    Google Scholar 

  • Christersson L (1978) The influence of photoperiod and temperature on the development of frost hardiness in seedlings of Pinus silvestris and Picea abies. Physiol Plantarum 44:288–294. doi:10.1111/j.1399-3054.1978.tb08634.x

    Google Scholar 

  • Conde D, González-Melendi P, Allona I (2013) Poplar stems show opposite epigenetic patterns during winter dormancy and vegetative growth. Trees 27:311–320. doi:10.1007/s00468-012-0800-x

    Google Scholar 

  • Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 35:1707–1728. doi:10.1111/j.1365-3040.2012.02552.x

    CAS  PubMed  Google Scholar 

  • Dodd AN, Salathia N, Hall A et al (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633. doi:10.1126/science.1115581

    CAS  PubMed  Google Scholar 

  • Dodd AN, Jakobsen MK, Baker AJ et al (2006) Time of day modulates low-temperature Ca signals in Arabidopsis. Plant J 48:962–973. doi:10.1111/j.1365-313X.2006.02933.x

    CAS  PubMed  Google Scholar 

  • Dodd AN, Gardner MJ, Hotta CT et al (2007) The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 318:1789–1792

    CAS  PubMed  Google Scholar 

  • Dong MA, Farré EM, Thomashow MF (2011) Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci U S A 108:7241–7246. doi:10.1073/pnas.1103741108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Druart N, Johansson A, Baba K et al (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50:557–573. doi:10.1111/j.1365-313X.2007.03077.x

    CAS  PubMed  Google Scholar 

  • Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229. doi:10.1093/embo-reports/kvf053

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edgar RS, Green EW, Zhao Y et al (2012) Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–464. doi:10.1038/nature11088

    PubMed Central  CAS  PubMed  Google Scholar 

  • Edwards KD (2006) FLOWERING LOCUS C Mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18:639–650. doi:10.1105/tpc.105.038315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eriksson ME, Webb AA (2011) Plant cell responses to cold are all about timing. Curr Opin Plant Biol 1–7. doi:10.1016/j.pbi.2011.08.005

    Google Scholar 

  • Eriksson ME, Hanano S, Southern MM et al (2003) Response regulator homologues have complementary, light-dependent functions in the Arabidopsis circadian clock. Planta 218:159–162. doi:10.1007/s00425-003-1106-4

    CAS  PubMed  Google Scholar 

  • Espinoza C, Degenkolbe T, Caldana C et al (2010) Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis. PLoS One 5:e14101. doi:10.1371/journal.pone.0014101

    PubMed Central  PubMed  Google Scholar 

  • Farinas B, Mas P (2011) Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. Plant J 66:318–329. doi:10.1111/j.1365-313X.2011.04484.x

    CAS  PubMed  Google Scholar 

  • Farré EM, Harmer SL, Harmon FG et al (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15:47–54. doi:10.1016/j.cub.2004.12.067

    PubMed  Google Scholar 

  • Fennell A (2014) Genomics and functional genomics of winter low temperature tolerance in temperate fruit crops. Crit Rev Plant Sci 33:125–140. doi:10.1080/07352689.2014.870410

    Google Scholar 

  • Filichkin SA, Breton G, Priest HD et al (2011) Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules. PLoS One 6:e16907. doi:10.1371/journal.pone.0016907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201

    CAS  PubMed  Google Scholar 

  • Fogelmark K, Troein C (2014) Rethinking transcriptional activation in the Arabidopsis circadian clock. PLoS Comput Biol 10:e1003705. doi:10.1371/journal.pcbi.1003705

    PubMed Central  PubMed  Google Scholar 

  • Fowler S, Lee K, Onouchi H et al (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J 18:4679–4688. doi:10.1093/emboj/18.17.4679

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol 137:961–968. doi:10.1104/pp.104.058354

    PubMed Central  CAS  PubMed  Google Scholar 

  • Frewen BE, Chen TH, Howe GT et al (2000) Quantitative trait loci and candidate gene mapping of bud set and bud flush in populus. Genetics 154:837–845

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fujiwara S, Wang L, Han L et al (2008) Post-translational regulation of the Arabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. J Biol Chem 283:23073–23083. doi:10.1074/jbc.M803471200

    CAS  PubMed  Google Scholar 

  • García-Gil MR, Mikkonen M, Savolainen O (2003) Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris. Mol Ecol 12:1195–1206

    PubMed  Google Scholar 

  • Gendron JM, Pruneda-Paz JL, Doherty CJ et al (2012) Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proc Natl Acad Sci U S A 109:3167–3172. doi:10.1073/pnas.1200355109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghelardini L, Berlin S, Weih M et al (2014) Genetic architecture of spring and autumn phenology in Salix. BMC Plant Biol 14:31. doi:10.1186/1471-2229-14-31

    PubMed Central  PubMed  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ et al (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442.

    CAS  PubMed  Google Scholar 

  • Gould PD, Locke JCW, Larue C et al (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18:1177–1187. doi:10.1105/tpc.105.039990

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gould PD, Diaz P, Hogben C, Kusakina J, Salem R, Hartwell J, Hall AJW (2009) Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. Plant J 58:893–901

    CAS  PubMed  Google Scholar 

  • Green RM, Tingay S, Wang Z-Y, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584. doi:10.1104/pp.004374

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352. doi:10.1038/38664

    CAS  PubMed  Google Scholar 

  • Gyllenstrand N, Karlgren A, Clapham D et al (2014) No time for spruce: rapid dampening of circadian rhythms in Picea abies (L. Karst). Plant Cell Physiol 55:535–550. doi:10.1093/pcp/pct199

    CAS  PubMed  Google Scholar 

  • Hall D, Ma X-F, Ingvarsson PK (2011) Adaptive evolution of the Populus tremula photoperiod pathway. Mol Ecol 20:1463–1474. doi:10.1111/j.1365-294X.2011.05014.x

    PubMed  Google Scholar 

  • Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377. doi:10.1146/annurev.arplant.043008.092054

    CAS  PubMed  Google Scholar 

  • Haydon MJ, Mielczarek O, Robertson FC et al (2013) Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature 502:689–692. doi:10.1038/nature12603

    CAS  PubMed  Google Scholar 

  • Heijde M, Ulm R (2013) Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad Sci U S A 110:1113–1118. doi:10.1073/pnas.1214237110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heijde M, Binkert M, Yin R et al (2013) Constitutively active UVR8 photoreceptor variant in Arabidopsis. Proc Natl Acad Sci U S A 110:20326–20331. doi:10.1073/pnas.1314336110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Helfer A, Nusinow DA, Chow BY et al (2011) LUX ARRHYTHMO Encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol 21:126–133. doi:10.1016/j.cub.2010.12.021

    PubMed Central  CAS  PubMed  Google Scholar 

  • Herrero E, Kolmos E, Bujdoso N et al (2012) EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the arabidopsis circadian clock. Plant Cell 24:428–443. doi:10.1105/tpc.111.093807

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hoffman DE, Jonsson P, Bylesjö M et al (2010) Changes in diurnal patterns within the Populus transcriptome and metabolome in response to photoperiod variation. Plant Cell Environ 33:1298–1313. doi:10.1111/j.1365-3040.2010.02148.x

    CAS  PubMed  Google Scholar 

  • Horvath DP, Sung S, Kim D et al (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73:169–179. doi:10.1007/s11103-009-9596-5

    CAS  PubMed  Google Scholar 

  • Howe GT, Bucciaglia PA, Hackett WP et al (1998) Evidence that the phytochrome gene family in black cottonwood has one PHYA locus and two PHYB loci but lacks members of the PHYC/F and PHYE subfamilies. Mol Biol Evol 15:160–175

    CAS  PubMed  Google Scholar 

  • Hsu C-Y, Adams JP, Kim H et al (2011) FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci U S A 108:10756–10761. doi:10.1073/pnas.1104713108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu C-Y, Adams JP, No K et al (2012) Overexpression of constans homologs CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar. PLoS One 7:e45448. doi:10.1371/journal.pone.0045448

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu PY, Devisetty UK, Harmer SL, Chory J (2013) Accurate timekeeping is controlled by a cycling activator in Arabidopsis. eLife 2:e00473–e00473. doi:10.7554/eLife.00473

    PubMed Central  PubMed  Google Scholar 

  • Huang W, Perez-Garcia P, Pokhilko A et al (2012) Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336:75–79. doi:10.1126/science.1219075

    CAS  PubMed  Google Scholar 

  • Ibáñez C, Ramos A, Acebo P et al (2008) Overall alteration of circadian clock gene expression in the chestnut cold response. PLoS One 3:e3567. doi:10.1371/journal.pone.0003567

    PubMed Central  PubMed  Google Scholar 

  • Ibáñez C, Kozarewa I, Johansson M et al (2010) Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees. Plant Physiol 153:1823–1833. doi:10.1104/pp.110.158220

    PubMed Central  PubMed  Google Scholar 

  • Ibáñez C, Collada C, Casado R et al (2013) Winter induction of the galactinol synthase gene is associated with endodormancy in chestnut trees. Trees 27:1309–1316. doi:10.1007/s00468–013-0879–8

    Google Scholar 

  • Imaizumi T (2010) Arabidopsis circadian clock and photoperiodism: time to think about location. Curr Opin Plant Biol 13:83–89. doi:10.1016/j.pbi.2009.09.007

    PubMed Central  CAS  PubMed  Google Scholar 

  • Imaizumi T, Schultz TF, Harmon FG et al (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297. doi:10.1126/science.1110586

    CAS  PubMed  Google Scholar 

  • Ingvarsson PK, García MV, Hall D et al (2006) Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics 172:1845–1853. doi:10.1534/genetics.105.047522

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ito S, Kawamura H, Niwa Y et al (2009) A genetic study of the Arabidopsis circadian clock with reference to the TIMING OF CAB EXPRESSION 1 (TOC1) gene. Plant Cell Physiol 50:290–303. doi:10.1093/pcp/pcn198

    CAS  PubMed  Google Scholar 

  • James AB, Syed NH, Bordage S et al (2012) Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. Plant Cell 24:961–981. doi:10.1105/tpc.111.093948

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jarvis SB, Taylor MA, MacLeod MR, Davies HV (1996) Cloning and characterisation of the cDNA clones of three genes that are differentially expressed during dormancy-breakage in the seeds of Douglas Fir (Pseudotsuga menziesii). J Plant Physiol 147:559–566. doi:10.1016/S0176-1617(96)80046-0

    CAS  Google Scholar 

  • Jiménez S, Reighard GL, Bielenberg DG (2010) Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol 73:157–167. doi:10.1007/s11103-010-9608-5

    PubMed  Google Scholar 

  • Johansson M, McWatters HG, Bako L et al (2011) Partners in time: EARLY BIRD associates with ZEITLUPE and regulates the speed of the Arabidopsis clock. Plant Physiol 155:2108–2122. doi:10.1104/pp.110.167155

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaczorowski KA, Quail PH (2003) Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock. Plant Cell 15:2654–2665. doi:10.1105/tpc.015065

    PubMed Central  CAS  PubMed  Google Scholar 

  • Källman T, De Mita S, Larsson H et al (2014) Patterns of nucleotide diversity at photoperiod related genes in Norway spruce [Picea abies (L.) Karst.]. PLoS One 9:e95306. doi:10.1371/journal.pone.0095306

    PubMed Central  PubMed  Google Scholar 

  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Top Dev Biol 91:29–66. doi:10.1016/S0070-2153(10)91002-8

    CAS  PubMed  Google Scholar 

  • Karlberg A, Englund M, Petterle A et al (2010) Analysis of global changes in gene expression during activity-dormancy cycle in hybrid aspen apex. Plant Biotechnol 27:1–16. doi:10.5511/plantbiotechnology.27.1

    CAS  Google Scholar 

  • Karlberg A, Bako L, Bhalerao RP (2011) Short day–mediated cessation of growth requires the downregulation of AINTEGUMENTALIKE1 Transcription factor in hybrid Aspen. PLoS Genet 7:e1002361. doi:10.1371/journal.pgen.1002361

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karlgren A, Gyllenstrand N, Källman T, Lagercrantz U (2013) Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst). PLoS One 8:e60110. doi:10.1371/journal.pone.0060110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Karve AA, Jawdy SS, Gunter LE et al (2012) Initial characterization of shade avoidance response suggests functional diversity between Populus phytochrome B genes. New Phytol 196:726–737. doi:10.1111/j.1469-8137.2012.04288.x

    CAS  PubMed  Google Scholar 

  • Kerk D, Conley TR, Rodriguez FA et al (2006) A chloroplast-localized dual-specificity protein phosphatase in Arabidopsis contains a phylogenetically dispersed and ancient carbohydrate-binding domain, which binds the polysaccharide starch. Plant J 46:400–413. doi:10.1111/j.1365-313X.2006.02704.x

    CAS  PubMed  Google Scholar 

  • Kim DH, Sung S (2013) Coordination of the vernalization response through a VIN3 and FLC gene family regulatory network in Arabidopsis. Plant Cell 25:454–469. doi:10.1105/tpc.112.104760

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim W-Y, Fujiwara S, Suh S-S et al (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449:356–360. doi:10.1038/nature06132

    CAS  PubMed  Google Scholar 

  • Kim J, Geng R, Gallenstein RA, Somers DE (2013) The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA. Development 140:4060–4069. doi:10.1242/dev.096651

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ko J-H, Prassinos C, Keathley D, Han K-H (2011) Novel aspects of transcriptional regulation in the winter survival and maintenance mechanism of poplar. Tree Physiol 31:208–225. doi:10.1093/treephys/tpq109

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Weigel D (2007) Move on up, it’s time for change–mobile signals controlling photoperiod-dependent flowering. Genes Dev 21:2371–2384. doi:10.1101/gad.1589007

    CAS  PubMed  Google Scholar 

  • Kolmos E, Nowak M, Werner M et al (2009) Integrating ELF4 into the circadian system through combined structural and functional studies. HFSP J 3:350–366. doi:10.2976/1.3218766

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kozarewa I, Ibáñez C, Johansson M et al (2010) Alteration of PHYA expression change circadian rhythms and timing of bud set in Populus. Plant Mol Biol 73:143–156. doi:10.1007/s11103-010-9619-2

    CAS  PubMed  Google Scholar 

  • Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147. doi:10.1016/j.cell.2009.11.006

    CAS  PubMed  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626. doi:10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H

    CAS  PubMed  Google Scholar 

  • Kwon Y-J, Park M-J, Kim S-G et al (2014) Alternative splicing and nonsense-mediated decay of circadian clock genes under environmental stress conditions in Arabidopsis. BMC Plant Biol 14:136–15. doi:10.1186/1471-2229-14-136

    PubMed Central  PubMed  Google Scholar 

  • Lazaro A, Valverde F, Pineiro M, Jarillo JA (2012) The Arabidopsis E3 Ubiquitin Ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell 24:982–999. doi:10.1105/tpc.110.081885

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee C-M, Thomashow MF (2012) Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci U S A 109:15054–15059. doi:10.1073/pnas.1211295109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leida C, Conesa A, Llácer G et al (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80. doi:10.1111/j.1469-8137.2011.03863.x

    CAS  PubMed  Google Scholar 

  • Li C, Puhakainen T, Welling A et al (2002) Cold acclimation in silver birch (Betula pendula). Development of freezing tolerance in different tissues and climatic ecotypes. Physiol Plantarum 116:478–488. doi:10.1034/j.1399-3054.2002.1160406.x

    CAS  Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530. doi:10.1093/jxb/erp195

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu H, Yu X, Li K et al (2008a) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322:1535–1539. doi:10.1126/science.1163927

    CAS  PubMed  Google Scholar 

  • Liu L-J, Zhang Y-C, Li Q-H et al (2008b) COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis. Plant Cell 20:292–306. doi:10.1105/tpc.107.057281

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu W, Yuan JS, Stewart CN (2013) Advanced genetic tools for plant biotechnology. Nature Reviews Genetics 1–13. doi:10.1038/nrg3583

    Google Scholar 

  • Locke JCW, Kozma-Bognar L, Gould PD et al (2006) Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol 2:59. doi:10.1038/msb4100102

    PubMed Central  PubMed  Google Scholar 

  • Ma X-F, Hall D, Onge KRS et al (2010) Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway. Genetics 186:1033–1044. doi:10.1534/genetics.110.120873

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malapeira J, Khaitova LC, Mas P (2012) Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 109:21540–21545. doi:10.1073/pnas.1217022110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mas P, Alabadí D, Yanovsky MJ et al (2003a) Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15:223–236

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mas P, Kim W-Y, Somers DE, Kay SA (2003b) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567–570. doi:10.1038/nature02163

    CAS  PubMed  Google Scholar 

  • Matsushika A, Makino S, Kojima M, Mizuno T (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol 41:1002–1012

    CAS  PubMed  Google Scholar 

  • McKown AD, Guy RD, Klápště J et al (2013) Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytologist 201:1263–1276. doi:10.1111/nph.12601

    PubMed  Google Scholar 

  • McKown AD, Klápště J, Guy RD et al (2014) Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytologist 203:535–553. doi:10.1111/nph.12815

    CAS  PubMed  Google Scholar 

  • McWatters HG, Devlin PF (2011) Timing in plants—A rhythmic arrangement. FEBS Lett 585:1474–1484. doi:10.1016/j.febslet.2011.03.051

    CAS  PubMed  Google Scholar 

  • Michael TP, Salomé PA, Yu HJ et al (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302:1049–1053. doi:10.1126/science.1082971

    CAS  PubMed  Google Scholar 

  • Mohamed R, Wang C-T, Ma C et al (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 62:674–688. doi:10.1111/j.1365-313X.2010.04185.x

    CAS  PubMed  Google Scholar 

  • Moreno-Cortés A, Hernández-Verdeja T, Sánchez-Jiménez P et al (2012) CsRAV1 induces sylleptic branching in hybrid poplar. New Phytologist 194:83–90. doi:10.1111/j.1469-8137.2011.04023.x

    PubMed  Google Scholar 

  • Myburg AA, Grattapaglia D, Tuskan GA et al (2014) The genome of Eucalyptus grandis. Nature 510:356–362. doi:10.1038/nature13308

    CAS  PubMed  Google Scholar 

  • Nagel DH, Kay SA (2012) Complexity in the wiring and regulation of plant circadian networks. Curr Biol 22:R648–R657. doi:10.1016/j.cub.2012.07.025

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamichi N, Kita M, Ito S et al (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 46:686–698. doi:10.1093/pcp/pci086

    CAS  PubMed  Google Scholar 

  • Nakamichi N, Kusano M, Fukushima A et al (2009) Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 50:447–462. doi:10.1093/pcp/pcp004

    CAS  PubMed  Google Scholar 

  • Navarro M, Marque G, Ayax C et al (2009) Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot 60:2713–2724. doi:10.1093/jxb/erp129

    PubMed Central  CAS  PubMed  Google Scholar 

  • Niittylä T, Comparot-Moss S, Lue W-L et al (2006) Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals. J Biol Chem 281:11815–11818. doi:10.1074/jbc.M600519200

    PubMed  Google Scholar 

  • Nitsch JP (1957) Photoperiodism in woody plants. Proc Amer Soc Hort Sci 70:526–544

    Google Scholar 

  • Nusinow DA, Helfer A, Hamilton EE et al (2012) The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475:398–402. doi:10.1038/nature10182

    Google Scholar 

  • Nystedt B, Street NR, Wetterbom A et al (2014) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584. doi:10.1038/nature12211

    Google Scholar 

  • Oliver SN, Finnegan EJ, Dennis ES et al (2009) Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci U S A 106:8386–8391. doi:10.1073/pnas.0903566106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Olsen JE, Junttila O (2002) Far red end-of-day treatment restores wild type-like plant length in hybrid aspen overexpressing phytochrome A. Physiol Plantarum 115:448–457

    CAS  Google Scholar 

  • Olsen JE, Junttila O, Nilsen J et al (1997) Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J 12:1339–1350

    CAS  Google Scholar 

  • Onai K, Ishiura M (2005) PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock. Genes Cells 10:963–972. doi:10.1111/j.1365-2443.2005.00892.x

    CAS  PubMed  Google Scholar 

  • O’Neill JS, van Ooijen G, Dixon LE et al (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469:554–558. doi:10.1038/nature09654

    Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T et al (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Nat Acad Sci U S A 95:8660–8664

    CAS  Google Scholar 

  • Para A, Farré EM, Imaizumi T et al (2007) PRR3 Is a vascular regulator of TOC1 stability in the Arabidopsis circadian clock. Plant Cell 19:3462–3473. doi:10.1105/tpc.107.054775

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perales M, Mas P (2007) A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19:2111–2123. doi:10.1105/tpc.107.050807

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pokhilko A, ndez APNAFA, Edwards KD et al (2012) The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 8:1–13. doi:10.1038/msb.2012.6

    Google Scholar 

  • Pruneda-Paz JL, Breton G, Para A, Kay SA (2009) A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323:1481–1485. doi:10.1126/science.1167206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Puhakainen T, Li C, Boije-Malm M et al (2004) Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Plant Physiol 136:4299–4307. doi:10.1104/pp.104.047258

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quail PH (2002) Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol 14:180–188

    CAS  PubMed  Google Scholar 

  • Ramos A, Pérez-Solís E, Ibáñez C et al (2005) Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci U S A 102:7037–7042. doi:10.1073/pnas.0408549102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rawat R, Takahashi N, Hsu PY, et al. (2011) REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genet 7:e1001350. doi: 10.1371/journal.pgen.1001350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renaut J, Lutts S, Hoffmann L, Hausman J-F (2004) Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biol (Stuttg) 6:81–90. doi:10.1055/s-2004-815733

    CAS  Google Scholar 

  • Revel FG, Herwig A, Garidou M-L et al (2007) The circadian clock stops ticking during deep hibernation in the European hamster. Proc Nat Acad Sci 104:13816–13820. doi:10.1073/pnas.0704699104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Richard S, Morency MJ, Drevet C et al (2000) Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol Biol 43:1–10

    CAS  PubMed  Google Scholar 

  • Rinne P, Saarelainen A, Junttila O (1994) Growth cessation and bud dormancy in relation to ABA level in seedlings and coppice shoots of Betula pubescens as affected by a short photoperiod, water stress and chilling. Physiol Plantarum 90:451–458. doi:10.1111/j.1399-3054.1994.tb08801.x

    CAS  Google Scholar 

  • Ríos G, Leida C, Conejero A, Badenes ML (2014) Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci 5:247. doi:10.3389/fpls.2014.00247

    PubMed Central  PubMed  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223. doi:10.1016/j.tplants.2007.03.012

    CAS  PubMed  Google Scholar 

  • Rugnone ML, Faigón Soverna A, Sanchez SE et al (2013) LNK genes integrate light and clock signaling networks at the core of the Arabidopsis oscillator. Proc Natl Acad Sci U S A 110:12120–12125. doi: 10.1073/pnas.1302170110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruttink T, Arend M, Morreel K et al (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19:2370–2390. doi:10.1105/tpc.107.052811

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG et al (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009. doi:10.1006/bbrc.2001.6299

    CAS  PubMed  Google Scholar 

  • Salomé PA, McClung CR (2004) The Arabidopsis thaliana clock. J Biol Rhythms 19:425–435. doi:10.1177/0748730404268112

    PubMed  Google Scholar 

  • Salomé PA, McClung CR (2005) PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17:791–803. doi:10.1105/tpc.104.029504

    PubMed Central  PubMed  Google Scholar 

  • Santamaría ME, Hasbún R, Valera MJ et al (2009) Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. J Plant Physiol 166:1360–1369. doi:10.1016/j.jplph.2009.02.014

    PubMed  Google Scholar 

  • Santamaria ME, Rodriguez R, Canal MJ, Toorop PE (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 108:485–498. doi:10.1093/aob/mcr185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sauter JJ (1988) Temperature-induced Changes in Starch and Sugars in the Stem of Populus × canadensis «robusta». J Plant Physiol 132:608–612. doi:10.1016/S0176-1617(88)80263-3

    CAS  Google Scholar 

  • Sawa M, Kay SA (2011) GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108:11698–11703. doi:10.1073/pnas.1106771108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis. Science 318:261–265. doi:10.1126/science.1146994

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schrader J, Moyle R, Bhalerao R et al (2004) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J 40:173–187. doi:10.1111/j.1365-313X.2004.02199.x

    CAS  PubMed  Google Scholar 

  • Seo PJ, Park MJ, Lim MH et al (2012) A Self-Regulatory Circuit of CIRCADIAN CLOCK-ASSOCIATED1 Underlies the Circadian Clock Regulation of Temperature Responses in Arabidopsis. Plant Cell 24:2427–2442. doi:10.1105/tpc.112.098723

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ et al (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Nat Acad Sci U S A 97:3753–3758. doi:10.1073/pnas.060023597

    CAS  Google Scholar 

  • Solomon OL, Berger DK, Myburg AA (2010) Diurnal and circadian patterns of gene expression in the developing xylem of Eucalyptus trees. S Afr J Bot 76:425–439. doi:10.1016/j.sajb.2010.02.087

    CAS  Google Scholar 

  • Song YH, Smith RW, To BJ et al (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336:1045–1049. doi:10.1126/science.1219644

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends in Plant Science 1–9. doi:10.1016/j.tplants.2013.05.003

    Google Scholar 

  • Staiger D, Shin J, Johansson M, Davis SJ (2013) The circadian clock goes genomic. Genome Biol 14:208. doi:10.1186/gb-2013-14-6-208

    PubMed Central  PubMed  Google Scholar 

  • Strayer C, Oyama T, Schultz TF et al (2000) Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768–771

    CAS  PubMed  Google Scholar 

  • Takata N, Saito S, Tanaka Saito C et al (2009) Molecular phylogeny and expression of poplar circadian clock genes, LHY1 and LHY2. New Phytol 181:808–819. doi:10.1111/j.1469-8137.2008.02714.x

    CAS  PubMed  Google Scholar 

  • Takata N, Saito S, Saito C, Uemura M (2010) Phylogenetic footprint of the plant clock system in angiosperms: evolutionary processes of pseudo-response regulators. BMC Evol Biol 10:126. doi:10.1186/1471-2148-10-126

    PubMed Central  PubMed  Google Scholar 

  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants. Academic Press, London

    Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599. doi:10.1146/annurev.arplant.50.1.571

    CAS  PubMed  Google Scholar 

  • Trevaskis B, Tadege M, Hemming MN et al (2007) Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143:225–235. doi:10.1104/pp.106.090860

    PubMed Central  CAS  PubMed  Google Scholar 

  • Unda F, Canam T, Preston L, Mansfield SD (2012) Isolation and characterization of galactinol synthases from hybrid poplar. J Exp Bot 63:2059–2069. doi:10.1093/jxb/err411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vallone D, Frigato E, Vernesi C et al (2007) Hypothermia modulates circadian clock gene expression in lizard peripheral tissues. Am J Physiol Regul Integr Comp Physiol 292:R160–6. doi:10.1152/ajpregu.00370.2006

    CAS  PubMed  Google Scholar 

  • Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217

    CAS  PubMed  Google Scholar 

  • Wang L, Fujiwara S, Somers DE (2010) PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J 29:1903–1915. doi:10.1038/emboj.2010.76

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wareing PF (1956) Photoperiodism in woody plants. Annu Rev Plant Physiol 7:191–214. doi:10.1146/annurev.pp.07.060156.001203

    CAS  Google Scholar 

  • Welling A, Palva ET (2006) Molecular control of cold acclimation in trees. Physiol Plantarum 127:167–181. doi:10.1111/j.1399-3054.2006.00672.x

    CAS  Google Scholar 

  • Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211. doi:10.1104/pp.108.117812

    PubMed Central  CAS  PubMed  Google Scholar 

  • Witt W, Sauter JJ (1995) In vitro degradation of starch grains by Phosphorylases and Amylases from poplar wood. J Plant Physiol 146:35–40. doi:10.1016/S0176-1617(11)81964-4

    CAS  Google Scholar 

  • Xie Q, Wang P, Liu X et al (2014) LNK1 and LNK2 Are Transcriptional Coactivators in the Arabidopsis Circadian Oscillator. Plant Cell. doi:10.1105/tpc.114.126573

    Google Scholar 

  • Yamamoto Y, Sato E, Shimizu T et al (2003) Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis. Plant Cell Physiol 44:1119–1130

    CAS  PubMed  Google Scholar 

  • Yordanov YS, Ma C, Strauss SH, Busov VB (2014) EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees. Proc Natl Acad Sci U S A 201405621. doi:10.1073/pnas.1405621111

    Google Scholar 

  • Zdepski A, Wang W, Priest HD et al (2008) Conserved daily transcriptional programs in carica papaya. Trop Plant Biol 1:236–245. doi:10.1007/s12042-008-9020-3

    PubMed Central  PubMed  Google Scholar 

  • Zeilinger MN, Farré EM, Taylor SR et al (2006) A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Mol Syst Biol 2:58. doi:10.1038/msb4100101

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from our funding agencies. Work in M.E.E.’s group was supported by Stiftelsen Nils och Dorthi Troëdssons forskningsfond, Carl Trygger Foundation for Scientific Research, the Kempe Foundations, the Swedish Governmental Agency for Innovation Systems (VINNOVA), the Swedish Research Council (VR), the Swedish Research Council Formas and the Berzelii Centre for forest biotechnology. M.E.E. is a VINNMER fellow supported by VINNOVA and the EU. Work in I.A.’s group was supported by the Spanish Ministry of Economy and Competitiveness grant AGL2011–22625/FOR and the Plant KBBE project PIM2010PKB-00702 from the EU. C.I. was supported by FONDECYT grant no. 1110831 (CONICYT—Chile). N.T. was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (no. 25850124). J.M.R-S was supported by the Spanish Ministry of Education, Culture and Sport FPU Fellowship FPU12/01648. M.J. was supported by Alexander von Humboldt Fellowship. We are grateful for technical assistance with delayed fluorescence from Dr. Manuela Jurca, and to Tamara Hernandez-Verdeja and Mariano Perales for critical reading of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isabel Allona PhD or Maria E. Eriksson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Johansson, M. et al. (2015). Role of the Circadian Clock in Cold Acclimation and Winter Dormancy in Perennial Plants. In: Anderson, J. (eds) Advances in Plant Dormancy. Springer, Cham. https://doi.org/10.1007/978-3-319-14451-1_3

Download citation

Publish with us

Policies and ethics