Skip to main content

Hemodynamic and Mechanical Factors Acting on Arteries

  • Chapter
  • First Online:
Arterial Disorders

Abstract

Arteries are permanently exposed to mechanical stress. Mechanical stress can be divided according to their nature, either tensile stress or shear stress. Tensile stress corresponds to changes in dimension according to changes in forces applied on the vessel. Shear stress is of a different nature; it corresponds to the friction of viscous fluid (here the blood) on the inner surface of the vessel (here the endothelium). It is to be noted that direct measurement of stress is difficult in vivo and that stress is most of the time deduced from stretch (elongation) and force (derived from pressure). Stress can also be derived from mechanical modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nichols WW, O’Rourke MF (2011) McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. Hodder Arnold, London, pp 195–225

    Google Scholar 

  2. Han HC, Fung YC (1995) Longitudinal strain of canine and porcine aortas. J Biomech 28:637–641

    Article  CAS  PubMed  Google Scholar 

  3. Wilson JS, Baek S, Humphrey JD (2012) Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J R Soc Interface 9:2047–2058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Masson I, Beaussier H, Boutouyrie P et al (2011) Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans. Biomech Model Mechanobiol 10:867–882

    Article  PubMed  Google Scholar 

  5. Humphrey JD, Yin FC (1987) A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys J 52:563–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Humphrey JD, Eberth JF, Dye WW, Gleason RL (2009) Fundamental role of axial stress in compensatory adaptations by arteries. J Biomech 42:1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Jackson ZS, Gotlieb AI, Langille BL (2002) Wall tissue remodeling regulates longitudinal tension in arteries. Circ Res 90:918–925

    Article  CAS  PubMed  Google Scholar 

  8. Fung YC (1991) What are the residual stresses doing in our blood vessels? Ann Biomed Eng 19:237–249

    Article  CAS  PubMed  Google Scholar 

  9. Boutouyrie P, Laurent S, Benetos A et al (1992) Opposing effects of ageing on distal and proximal large arteries in hypertensives. J Hypertens Suppl 10:S87–S91

    Article  CAS  PubMed  Google Scholar 

  10. Benetos A, Laurent S, Hoeks AP et al (1993) Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb 13:90–97

    Article  CAS  PubMed  Google Scholar 

  11. Nichols WW, O’Rourke MF (2005) McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. Hodder Arnold, London

    Google Scholar 

  12. Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387

    Article  PubMed  Google Scholar 

  13. Boutouyrie P, Bezie Y, Lacolley P et al (1997) In vivo/in vitro comparison of rat abdominal aorta wall viscosity. Influence of endothelial function. Arterioscler Thromb Vasc Biol 17:1346–1355

    Article  CAS  PubMed  Google Scholar 

  14. Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423

    CAS  PubMed  Google Scholar 

  15. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  CAS  PubMed  Google Scholar 

  16. Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 259:381–392

    Article  CAS  PubMed  Google Scholar 

  17. Boutouyrie P, Bussy C, Lacolley P et al (1999) Association between local pulse pressure, mean blood pressure, and large-artery remodeling. Circulation 100:1387–1393

    Article  CAS  PubMed  Google Scholar 

  18. Briet M, Boutouyrie P, Laurent S, London GM (2012) Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int 82:388–400

    Article  PubMed  Google Scholar 

  19. Laurent S, Boutouyrie P (2015) Structural factor of hypertension: large and small artery alterations. Circ Res. doi: 10.1161/CIRCRESAHA.116.303596

  20. Kaess BM, Rong J, Larson MG et al (2012) Aortic stiffness, blood pressure progression, and incident hypertension. JAMA 308:875–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Boutouyrie .

Editor information

Editors and Affiliations

Glossary

Compliance

 Change in volume for a change in pressure. Expresses the elasticity of a chamber.

Distensibility

 Compliance normalized to initial volume.

Elastic modulus

 Either incremental elastic modulus (if reference dimension unknown) or Young’s elastic modulus (if reference dimension known). Ratio of stress to stretch: expresses the stiffness of the wall material.

Pressure

 Force per unit of surface.

Stress

 Force per unit of surface (same unit as pressure).

Stretch

 Elongation, defined from a reference dimension, synonymous to strain.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Boutouyrie, P., Beaussier, H., Laurent, S. (2015). Hemodynamic and Mechanical Factors Acting on Arteries. In: Berbari, A., Mancia, G. (eds) Arterial Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-14556-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14556-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14555-6

  • Online ISBN: 978-3-319-14556-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics