Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 57))

  • 1215 Accesses

Abstract

In this chapter, mechanical behaviours of a unique type of composite material—cortical bone tissue—are considered for different length scales. Both experimental and computational approaches are discussed in this study to evaluate the effects of mechanical anisotropy and structural heterogeneity on the fracture process of cortical bone. First, variability and anisotropic mechanical behaviour of cortical bone tissue are characterised and analysed experimentally for different loading conditions and orientations. Then, results from the experimental studies are used to develop finite-element models across different length-scales to elucidate mechanical and structural mechanisms underpinning the anisotropic and non-linear fracture processes of cortical bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Wahab AA, Maligno AR, Silberschmidt VV (2010) Micro-scale numerical model of bovine cortical bone: analysis of plasticity localization. In: Proceedings of the ASME 2010: 10th Biennial conference on engineering systems design and analysis (ESDA2010), 12–14 July 2010, Istanbul, Turkey, vol. 1, ESDA2010-25329, pp 821–829

    Google Scholar 

  • Abdel-Wahab AA, Alam K, Silberschmidt VV (2011) Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. J Mech Behav Biomed Mater 4(5):807–820

    Article  Google Scholar 

  • Ascenzi A, Benvenuti A (1986) Orientation of collagen fibers at the boundary between two successive osteonic lamellae and its mechanical interpretation. J Biomech 19(6):455–463

    Article  Google Scholar 

  • Behiri JC, Bonfield W (1989) Orientation dependence of the fracture mechanics of cortical bone. J Biomech 22(8–9):863–872

    Article  Google Scholar 

  • Bonfield W, Clark EA (1973) Elastic deformation of compact bone. J Mater Sci 8(11):1590–1594

    Article  Google Scholar 

  • Bonney H, Colston BJ, Goodman AM (2011) Regional variation in the mechanical properties of cortical bone from the porcine femur. Med Eng Phys 33(4):513–520

    Article  Google Scholar 

  • Boyce TM, Fyhrie DP, Glotkowski MC, Radin EL, Schaffler MB (1998) Damage type and strain mode associations in human compact bone bending fatigue. J Orthop Res 16(3):322–329

    Article  Google Scholar 

  • Budyn E, Hoc T (2007) Multiple scale modeling of cortical bone fracture in tension using X-FEM. Eur J Comput Mech 16:213–236

    MATH  Google Scholar 

  • Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Jt Surg 59(7):954–962

    Google Scholar 

  • Chan KS, Nicolella DP (2012) Micromechanical modeling of R-curve behaviors in human cortical bone. J Mech Behav Biomed Mater 16:136–152

    Article  Google Scholar 

  • Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21(2):131–139

    Article  Google Scholar 

  • Currey JD (1999) The design of mineralised hard tissues for their mechanical functions. J Exp Biol 202:3285–3294

    Google Scholar 

  • Currey JD (2012) The structure and mechanics of bone. J Mater Sci 47(1):41–54

    Article  MathSciNet  Google Scholar 

  • Currey JD (2013) Bones: structure and mechanics. Princeton University Press, Princeton

    Book  Google Scholar 

  • Ebacher V, Wang R (2008) A unique microcracking process associated with the inelastic deformation of Haversian bone. Calcif Tissue Int 19:57–66

    Google Scholar 

  • Ethier CR, Simmons CA (2007) Introductory biomechanics: from cells to organisms. Cambridge Texts in Biomedical Engineering. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen-mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  Google Scholar 

  • Hamed E, Lee Y, Jasiuk I (2010) Multiscale modeling of elastic properties of cortical bone. Acta Mech 213(1–2):131–154

    Article  MATH  Google Scholar 

  • Katz JL, Yoon HS, Lipson S, Maharidge R, Meunier A, Christel P (1984) The effects of remodeling on the elastic properties of bone. Calcif Tissue Int 36:31–36

    Article  Google Scholar 

  • Launey ME, Buehler MJ, Ritchie RO (2010) On the mechanistic origins of toughness in bone. Annu Rev Mater Res 40:25–53

    Article  Google Scholar 

  • Li S, Abdel-Wahab A, Silberschmidt VV (2013a) Analysis of fracture processes in cortical bone tissue. Eng Fract Mech 110:448–458

    Article  Google Scholar 

  • Li S, Demirci E, Silberschmidt VV (2013b) Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. J Mech Behav Biomed Mater 21:109–120

    Article  Google Scholar 

  • Li S, Abdel-Wahab A, Demirci E, Silberschmidt VV (2014) Penetration of cutting tool into cortical bone: experimental and numerical investigation of anisotropic mechanical behaviour. J Biomech 47(5):1117–1126

    Article  Google Scholar 

  • Liu D, Weiner S, Wagner HD (1999) Anisotropic mechanical properties of lamellar bone using miniature cantilever bending specimens. J Biomech 32(7):647–654

    Article  Google Scholar 

  • Martin RB, Boardman DL (1993) The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J Biomech 26(9):1047–1054

    Article  Google Scholar 

  • Martin RB, Burr DB (1989) Structure, function, and adaptation of compact bone. Raven Press, New York

    Google Scholar 

  • Mercer C, He MY, Wang R, Evans AG (2006) Mechanisms governing the inelastic deformation of cortical bone and application to Trabecular bone. Acta Biomater 2(1):59–68

    Article  Google Scholar 

  • Montalbano T, Feng G (2011) Nanoindentation characterization of the cement lines in ovine and bovine femurs. J Mater Res 26:1036–1041

    Article  Google Scholar 

  • Nalla RK, Kinney JH, Ritchie RO (2004a) On the origin of the toughness of mineralized tissue: microcracking or crack. Bone 34:790–798

    Article  Google Scholar 

  • Nalla RK, Kruzic JJ, Ritchie RO (2004b) On the origin of the toughness of mineralized tissue: microcracking or crack bridging? Bone 34(5):790–798

    Article  Google Scholar 

  • Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2005a) Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials 26(2):217–231

    Article  Google Scholar 

  • Nalla RK, Stolken JS, Kinney JH, Ritchie RO (2005b) Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J Biomech 38(7):1517–1525

    Article  Google Scholar 

  • Nyman JS, Leng H, Dong XN, Wang X (2009) Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading. J Mech Behav Biomed Mater 2(6):613–619

    Article  Google Scholar 

  • Peterlik H, Roschger P, Klaushofer K, Fratzl P (2006) Orientation dependent fracture toughness of lamellar bone. Int J Fract 139(3–4):395–405

    Article  MATH  Google Scholar 

  • Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8(6):393–405

    Article  Google Scholar 

  • Rho JY, Pharr GM (1999) Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci: Mater Med 10(8):485–488

    Google Scholar 

  • Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18(20):1325–1330

    Article  Google Scholar 

  • Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92–102

    Article  Google Scholar 

  • Ritchie RO, Kinney JH, Kruzic JJ, Nalla RK (2005) A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue Fract Eng Mater Struct 28(4):345–371

    Article  Google Scholar 

  • Robertson DM, Robertson D, Barrett CR (1978) Fracture toughness, critical crack length and plastic zone size in bone. J Biomech 11(8–9):359–364

    Article  Google Scholar 

  • Roe SC, Pijanowski GJ, Johnson AL (1988) Biomechanical properties of canine cortical bone allografts: effects of preparation and storage. Am J Vet Res 49:978–986

    Google Scholar 

  • Saha S, Hayes WC (1977) Relations between tensile impact properties and microstructure of compact bone. Calcif Tissue Res 24(1):65–72

    Article  Google Scholar 

  • Sevostianov I, Kachanov M (2000) Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. J Biomech 33(7):881–888

    Article  Google Scholar 

  • Standard (1999) Fracture mechanics toughness tests. method for determination of \({K}_{Ic}\), critical CTOD and critical \({J}\) values of metallic materials. British Standard Institute, BS7448–BS7449

    Google Scholar 

  • Systemes D (2012) Abaqus v6.12 documentation-ABAQUS analysis user’s manual. Inc 6.12 edn

    Google Scholar 

  • Thompson JB, Kindt JH, Drake B, Hansma HG, Morse DE, Hansma PK (2001) Bone indentation recovery time correlates with bond reforming time. Nature 414:773–776

    Article  Google Scholar 

  • Ural A, Vashishth D (2006) Cohesive finite element modeling of age-related toughness loss in human cortical bone. J Biomech 39(16):2974–2982

    Article  Google Scholar 

  • Vashishth D, Tanner KE, Bonfield W (2003) Experimental validation of a microcracking-based toughening mechanism for cortical bone. J Biomech 36(1):121–124

    Article  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  Google Scholar 

  • Yeni YN, Fyhrie DP (2003) A rate-dependent microcrack-bridging model that can explain the strain rate dependency of cortical bone apparent yield strength. J Biomech 36(9):1343–1353

    Article  Google Scholar 

  • Zimmermann EA, Schaible E, Bale H, Barth HD, Tang SY, Reichert P (2011) Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proc Natl Acad Sci 108:14,416–14,421

    Google Scholar 

  • Zioupos P, Currey JD (1994) The extent of microcracking and the morphology of microcracks in damaged bone. J Mater Sci 29(4):978–986

    Article  Google Scholar 

  • Zioupos P, Wang XT, Currey JD (1996) The accumulation of fatigue microdamage in human cortical bone of two different ages in vitro. Clin Biomech 11(7):365–375

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from EPSRC United Kingdom (Grant no. EP/G048886/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim V. Silberschmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, S., Abdel-Wahab, A., Demirci, E., Silberschmidt, V.V. (2015). Fracture of Cortical Bone Tissue. In: Altenbach, H., Brünig, M. (eds) Inelastic Behavior of Materials and Structures Under Monotonic and Cyclic Loading. Advanced Structured Materials, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-14660-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14660-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14659-1

  • Online ISBN: 978-3-319-14660-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics