Skip to main content

State-of-the-Art Thin Film Electrolytes for Solid Oxide Fuel Cells

  • Chapter
  • First Online:
Thin Film Structures in Energy Applications

Abstract

State-of-the-art solid oxide fuel cells (SOFC) are among the main candidates for clean energy technology due to their high efficiency, fuel flexibility, low air pollution, and minimal greenhouse gas emission. However, high operational temperature of SOFC is a greater challenge in commercialization of these devices for low cost and portable applications. High temperature operation of SOFC degrades its performance with aging, limits the selection of materials for fuel cell components, and increases the fabrication cost. Thus, there have been enormous efforts to improve the properties of existing materials and develop new materials for SOFC components in order to lower the operating temperature of SOFC. Recent advances in thin film technology have also been utilized to develop new materials with improved properties for SOFC. One of the key components in SOFC is the electrolyte and several research groups are working on developing new electrolyte materials. In this chapter, we will discuss the recent advances in thin film SOFC electrolytes. This extensive discussion includes the evolution of doped ceria, doped zirconia, and multilayer hetero-structured thin film electrolytes. The newly developed nanoscale thin films and multilayer hetero-structures with improved oxygen ionic conductivity will have significant impact on SOFC devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Energy Information Administration. Ann. Energy Rev. (2011)

    Google Scholar 

  2. S.P.S. Badwal, K. Foger, Solid oxide electrolyte fuel cell review. Ceram. Int. 22(3), 257–265 (1996)

    Google Scholar 

  3. S.C. Singhal, Advances in solid oxide fuel cell technology. Solid State Ion. 135(1–4), 305–313 (2000)

    Google Scholar 

  4. O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects. Electrochim. Acta 45(15–16), 2423–2435 (2000)

    Google Scholar 

  5. S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ion. 152–153, 405–410 (2002)

    Google Scholar 

  6. N.Q. Minh, Solid oxide fuel cell technology–features and applications. Solid State Ion. 174(1–4), 271–277 (2004)

    Google Scholar 

  7. S.C. Singhal, Solid oxide fuel cells. Electrochem. Soc. Interface 16(4), 41 (2007)

    Google Scholar 

  8. E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334(6058), 935–939 (2011)

    Google Scholar 

  9. H. Tu, U. Stimming, Advances, aging mechanisms and lifetime in solid-oxide fuel cells. J. Power Sources 127(1–2), 284–293 (2004)

    Google Scholar 

  10. B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414(6861), 345–352 (2001)

    Google Scholar 

  11. C. Ding, T. Hashida, High performance anode-supported solid oxide fuel cell based on thin-film electrolyte and nanostructured cathode. Energy Environ. Sci. 3(11), 1729–1731 (2010)

    Google Scholar 

  12. S.P.S. Badwal, Stability of solid oxide fuel cell components. Solid State Ion. 143(1), 39–46 (2001)

    Google Scholar 

  13. D. Beckel et al., Thin films for micro solid oxide fuel cells. J. Power Sources 173(1), 325–345 (2007)

    Google Scholar 

  14. S.J. Litzelman et al., Opportunities and challenges in materials development for thin film solid oxide fuel cells. Fuel Cells 8(5), 294–302 (2008)

    Google Scholar 

  15. H.L. Tuller, S.J. Litzelman, W. Jung, Micro-ionics: next generation power sources. Phys. Chem. Chem. Phys. 11(17), 3023–3034 (2009)

    Google Scholar 

  16. J. Santiso, M. Burriel, Deposition and characterisation of epitaxial oxide thin films for SOFCs. J. Solid State Electrochem. 15(5), 985–1006 (2011)

    Google Scholar 

  17. F. Emiliana, P. Daniele, T. Enrico, Ionic conductivity in oxide heterostructures: the role of interfaces. Sci. Tech. Adv. Mater. 11(5), 054503 (2010)

    Google Scholar 

  18. X. Guo, J. Maier, Ionically conducting two-dimensional heterostructures. Adv. Mater. 21(25–26), 2619–2631 (2009)

    Google Scholar 

  19. J.M. Vohs, R.J. Gorte, High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21(9), 943–956 (2009)

    Google Scholar 

  20. S.P. Jiang, A comparison of O2 reduction reactions on porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O3 electrodes. Solid State Ion. 146(1–2), 1–22 (2002)

    Google Scholar 

  21. E.P. Murray, T. Tsai, S.A. Barnett, Oxygen transfer processes in (La, Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study. Solid State Ion. 110(3–4), 235–243 (1998)

    Google Scholar 

  22. T. Horita et al., Oxygen reduction mechanism at porous La1−xSrxCoO3−d cathodes/La0.8Sr0.2Ga0.8Mg0.2O2.8 electrolyte interface for solid oxide fuel cells. Electrochim. Acta 46(12), 1837–1845 (2001)

    Google Scholar 

  23. A. Mineshige et al., Metal–insulator transition and crystal structure of La1−xSrxCoO3 as functions of Sr-content, temperature, and oxygen partial pressure. J. Solid State Chem. 142(2), 374–381 (1999)

    Google Scholar 

  24. H. Uchida, S. Arisaka, M. Watanabe, High performance electrodes for medium-temperature solid oxide fuel cells: activation of La(Sr)CoO3 cathode with highly dispersed Pt metal electrocatalysts. Solid State Ion. 135(1–4), 347–351 (2000)

    Google Scholar 

  25. Y. Huang, J.M. Vohs, R.J. Gorte, Fabrication of Sr-doped LaFeO3 YSZ composite cathodes. J. Electrochem. Soc. 151(4), A646–A651 (2004)

    Google Scholar 

  26. J.M. Ralph, C. Rossignol, R. Kumar, Cathode materials for reduced-temperature SOFCs. J. Electrochem. Soc. 150(11), A1518–A1522 (2003)

    Google Scholar 

  27. S.P. Simner et al., Performance variability of La (Sr) FeO3 SOFC cathode with Pt, Ag, and Au current collectors. J. Electrochem. Soc. 152(9), A1851–A1859 (2005)

    Google Scholar 

  28. A. Esquirol et al., Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8 O3 cathodes for intermediate-temperature SOFCs. J. Electrochem. Soc. 151(11), A1847–A1855 (2004)

    Google Scholar 

  29. Z. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431(7005), 170–173 (2004)

    Google Scholar 

  30. B. Wei et al., Thermal and electrical properties of new cathode material Ba0.5Sr0.5Co0.8Fe0.2O3 − δ for solid oxide fuel cells. Electrochem. Solid State Lett. 8(8), A428–A431 (2005)

    Google Scholar 

  31. S.P. Jiang, Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int. J. Hydrogen Energy 37(1), 449–470 (2012)

    Google Scholar 

  32. J. Richter et al., Materials design for perovskite SOFC cathodes. Monatsh. Chem. 140(9), 985–999 (2009)

    Google Scholar 

  33. S.J. Skinner, Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3(2), 113–121 (2001)

    Google Scholar 

  34. A. Tarancon et al., Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 20(19), 3799–3813 (2010)

    Google Scholar 

  35. A. Bieberle-Hütter, M. Søgaard, H.L. Tuller, Electrical and electrochemical characterization of microstructured thin film La1−xSrxCoO3 electrodes. Solid State Ion. 177(19–25), 1969–1975 (2006)

    Google Scholar 

  36. A. Bieberle-Hütter, H. Tuller, Fabrication and structural characterization of interdigitated thin film La1 − x Sr x CoO 3 (LSCO) electrodes. J. Electroceram. 16(2), 151–157 (2006)

    Google Scholar 

  37. E.J. Crumlin et al., Oxygen electrocatalysis on epitaxial La0.6Sr0.4CoO3-δ perovskite thin films for solid oxide fuel cells. J. Electrochem. Soc. 159(7), F219–F225 (2012)

    Google Scholar 

  38. G.J. La O’ et al., Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. Angew. Chem. Int. Ed. 49(31), 5344–5347 (2010)

    Google Scholar 

  39. E. Mutoro et al., Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells. Energy Environ. Sci. 4(9), 3689–3696 (2011)

    Google Scholar 

  40. A.C. Johnson et al., Fabrication and electrochemical performance of thin-film solid oxide fuel cells with large area nanostructured membranes. J. Power Sources 195(4), 1149–1155 (2010)

    Google Scholar 

  41. M. Prestat et al., Oxygen reduction at thin dense La0.52Sr0.48Co0.18Fe0.82O3–δ electrodes. J. Electroceram. 18(1–2), 111–120 (2007)

    Google Scholar 

  42. M. Prestat, J.-F. Koenig, L. Gauckler, Oxygen reduction at thin dense La0.52Sr0.48Co0.18Fe0.82O3–δ electrodes. J. Electroceram. 18(1–2), 87–101 (2007)

    Google Scholar 

  43. F.S. Baumann et al., Ba0.5Sr0.5Co0.8Fe0.2O3−δ thin film microelectrodes investigated by impedance spectroscopy. Solid State Ion. 177(35–36), 3187–3191 (2006)

    Google Scholar 

  44. F.S. Baumann, J. Maier, J. Fleig, The polarization resistance of mixed conducting SOFC cathodes: a comparative study using thin film model electrodes. Solid State Ion. 179(21–26), 1198–1204 (2008)

    Google Scholar 

  45. W.Z. Zhu, S.C. Deevi, A review on the status of anode materials for solid oxide fuel cells. Mater. Sci. Eng. A 362(1–2), 228–239 (2003)

    Google Scholar 

  46. R.J. Gorte, J.M. Vohs, Nanostructured anodes for solid oxide fuel cells. Curr. Opin. Colloid Interface Sci. 14(4), 236–244 (2009)

    Google Scholar 

  47. Y.-H. Huang et al., Double perovskites as anode materials for solid-oxide fuel cells. Science 312(5771), 254–257 (2006)

    Google Scholar 

  48. O.A. Marina, N.L. Canfield, J.W. Stevenson, Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ion. 149(1–2), 21–28 (2002)

    Google Scholar 

  49. P.R. Slater, J.T.S. Irvine, Niobium based tetragonal tungsten bronzes as potential anodes for solid oxide fuel cells: synthesis and electrical characterisation. Solid State Ion. 120(1–4), 125–134 (1999)

    Google Scholar 

  50. S. Tao, J.T.S. Irvine, Optimization of mixed conducting properties of Y2O3–ZrO2–TiO2 and Sc2O3–Y2O3–ZrO2–TiO2 solid solutions as potential SOFC anode materials. J. Solid State Chem. 165(1), 12–18 (2002)

    Google Scholar 

  51. S. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2(5), 320–323 (2003)

    Google Scholar 

  52. A. Bieberle, L.P. Meier, L.J. Gauckler, The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes. J. Electrochem. Soc. 148(6), A646–A656 (2001)

    Google Scholar 

  53. J. Mizusaki et al., Kinetic studies of the reaction at the nickel pattern electrode on YSZ in H2/H2O atmospheres. Solid State Ion. 70–71(Part 1(0)), 52–58 (1994)

    Google Scholar 

  54. B.C.H. Steele, Oxygen transport and exchange in oxide ceramics. J. Power Sources 49(1–3), 1–14 (1994)

    Google Scholar 

  55. B.C.H. Steele, Interfacial reactions associated with ceramic ion transport membranes. Solid State Ion. 75, 157–165 (1995)

    Google Scholar 

  56. M.I. Nandasiri et al., Nanoscale thin film electrolytes for clean energy applications. Nanosci. Nanotechnol. Lett. 4(2), 124–131 (2012)

    Google Scholar 

  57. R. Sanghavi et al., Integrated experimental and modeling study of the ionic conductivity of samaria-doped ceria thin films. Solid State Ion. 204–205, 13–19 (2011)

    Google Scholar 

  58. Z.Q. Yu et al., Integrated experimental and modeling study of ionic conductivity of scandia-stabilized zirconia thin films. Solid State Ion. 181(8–10), 367–371 (2010)

    Google Scholar 

  59. S. Azad et al., Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia. Appl. Phys. Lett. 86(13), 131906-3 (2005)

    Google Scholar 

  60. S. Sanna et al., Enhancement of ionic conductivity in Sm-doped ceria/yttria-stabilized zirconia heteroepitaxial structures. Small 6(17), 1863–1867 (2010)

    Google Scholar 

  61. J. Garcia-Barriocanal et al., Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321(5889), 676–680 (2008)

    Google Scholar 

  62. M.I Nandasiri, Engineered interfaces and nano-scale thin films for solid oxide fuel cell electrolytes (2013)

    Google Scholar 

  63. S.P.S. Badwal, Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ion. 52(1–3), 23–32 (1992)

    Google Scholar 

  64. T.H. Etsell, S.N. Flengas, Electrical properties of solid oxide electrolytes. Chem. Rev. 70(3), 339–376 (1970)

    Google Scholar 

  65. M.M. Nasrallah, D.L. Douglass, Ionic and electronic conductivity in Y 2 O 3‐doped monoclinic ZrO2. J. Electrochem. Soc. 121(2), 255–262 (1974)

    Google Scholar 

  66. R.J. Stafford, S.J. Rothman, J.L. Routbort, Effect of dopant size on the ionic conductivity of cubic stabilised ZrO2. Solid State Ion. 37(1), 67–72 (1989)

    Google Scholar 

  67. Y. Arachi et al., Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system. Solid State Ion. 121(1–4), 133–139 (1999)

    Google Scholar 

  68. J.M. Dixon et al., Electrical resistivity of stabilized zirconia at elevated temperatures. J. Electrochem. Soc. 110(4), 276–280 (1963)

    Google Scholar 

  69. C. Haering, A. Roosen, H. Schichl, Degradation of the electrical conductivity in stabilised zirconia systems. Part I: yttria-stabilised zirconia. Solid State Ion. 176(3–4), 253–259 (2005)

    Google Scholar 

  70. J. Kondoh et al., Effect of aging on yttria-stabilized zirconia. J. Electrochem. Soc. 145(5), 1527–1536 (1998)

    Google Scholar 

  71. A.I. Ioffe, D.S. Rutman, S.V. Karpachov, On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim. Acta 23(2), 141–142 (1978)

    Google Scholar 

  72. J.W. Fergus, Electrolytes for solid oxide fuel cells. J. Power Sources 162(1), 30–40 (2006)

    Google Scholar 

  73. J. Herle, A.J. McEvoy, K.R. Thampi, Conductivity measurements of various yttria-stabilized zirconia samples. J. Mater. Sci. 29(14), 3691–3701 (1994)

    Google Scholar 

  74. X.J. Chen et al., Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte. Mater. Sci. Eng. A 335(1–2), 246–252 (2002)

    Google Scholar 

  75. M. Han et al., Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Power Sources 165(2), 757–763 (2007)

    Google Scholar 

  76. S. Ikeda et al., Electrical conductivity of yttria-stabilized zirconia single crystals. J. Mater. Sci. 20(12), 4593–4600 (1985)

    Google Scholar 

  77. I. Kosacki et al., Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ion. 176(13–14), 1319–1326 (2005)

    Google Scholar 

  78. A. Rivera, J. Santamaria, C. Leon, Electrical conductivity relaxation in thin-film yttria-stabilized zirconia. Appl. Phys. Lett. 78(5), 610–612 (2001)

    Google Scholar 

  79. Y. Mizutani et al., From rare earth doped zirconia to 1 kW solid oxide fuel cell system. J. Alloys Compd. 408–412, 518–524 (2006)

    Google Scholar 

  80. J.W. Fergus, Doping and defect association in oxides for use in oxygen sensors. J. Mater. Sci. 38(21), 4259–4270 (2003)

    Google Scholar 

  81. V.V. Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ion. 174(1–4), 135–149 (2004)

    Google Scholar 

  82. K. Nomura et al., Aging and Raman scattering study of scandia and yttria doped zirconia. Solid State Ion. 132(3–4), 235–239 (2000)

    Google Scholar 

  83. O. Yamamoto et al., Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ion. 79, 137–142 (1995)

    Google Scholar 

  84. S.P.S. Badwal, J. Drennan, Microstructure/conductivity relationship in the scandia-zirconia system. Solid State Ion. 53–56(Part 2), 769–776 (1992)

    Google Scholar 

  85. S.P.S. Badwal, F.T. Ciacchi, D. Milosevic, Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation. Solid State Ion. 136–137, 91–99 (2000)

    Google Scholar 

  86. H. Huang et al., Structure, local environment, and ionic conduction in scandia stabilized zirconia. Solid State Ion. 179(27–32), 1442–1445 (2008)

    Google Scholar 

  87. D. Lee et al., Characterization of scandia stabilized zirconia prepared by glycine nitrate process and its performance as the electrolyte for IT-SOFC. Solid State Ion. 176(11–12), 1021–1025 (2005)

    Google Scholar 

  88. Y. Mizutani et al., Development of high-performance electrolyte in SOFC. Solid State Ion. 72(Part 2), 271–275 (1994)

    Google Scholar 

  89. C.N. Ginestra et al., Atomic layer deposition of Y2O3 ∕ ZrO2 nanolaminates: a route to ultrathin solid-state electrolyte membranes. Electrochem. Solid State Lett. 10(10), B161–B165 (2007)

    Google Scholar 

  90. X. Guo et al., Ionic conduction in zirconia films of nanometer thickness. Acta Mater. 53(19), 5161–5166 (2005)

    Google Scholar 

  91. S. Heiroth et al., Microstructure and electrical conductivity of YSZ thin films prepared by pulsed laser deposition. Appl. Phys. A Mater. Sci. Proc. 93(3), 639–643 (2008)

    Google Scholar 

  92. I. Kosacki et al., Surface/interface-related conductivity in nanometer thick YSZ films. Electrochem. Solid State Lett. 7(12), A459–A461 (2004)

    Google Scholar 

  93. J.H. Shim et al., Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chem. Mater. 19(15), 3850–3854 (2007)

    Google Scholar 

  94. M. Sillassen et al., Low-temperature superionic conductivity in strained yttria-stabilized zirconia. Adv. Funct. Mater. 20(13), 2071–2076 (2010)

    Google Scholar 

  95. H.-R. Kim et al., ‘Illusional’ nano-size effect due to artifacts of in-plane conductivity measurements of ultra-thin films. Phys. Chem. Chem. Phys. 13(13), 6133–6137 (2011)

    Google Scholar 

  96. R. Devanathan et al., Computer simulation of defects and oxygen transport in yttria-stabilized zirconia. Solid State Ion. 177(15–16), 1251–1258 (2006)

    Google Scholar 

  97. A. Bogicevic, C. Wolverton, Nature and strength of defect interactions in cubic stabilized zirconia. Phys. Rev. B 67(2), 024106 (2003)

    Google Scholar 

  98. F. Pietrucci et al., Vacancy-vacancy interaction and oxygen diffusion in stabilized cubic ZrO2 from first principles. Phys. Rev. B 78(9), 094301 (2008)

    Google Scholar 

  99. Y. Yamamura, S. Kawasaki, H. Sakai, Molecular dynamics analysis of ionic conduction mechanism in yttria-stabilized zirconia. Solid State Ion. 126(1–2), 181–189 (1999)

    Google Scholar 

  100. M.O. Zacate et al., Defect cluster formation in M2O3-doped cubic ZrO2. Solid State Ion. 128(1–4), 243–254 (2000)

    Google Scholar 

  101. N. El Habra et al., A study on Sc2O3-stabilized zirconia obtained by MOCVD as a potential electrolyte for solid oxide fuel cells. Chem. Vapor Depos. 18(10–12), 289–294 (2012)

    Google Scholar 

  102. H. Shi, R. Ran, Z. Shao, Wet powder spraying fabrication and performance optimization of IT-SOFCs with thin-film ScSZ electrolyte. Int. J. Hydrogen Energy 37(1), 1125–1132 (2012)

    Google Scholar 

  103. B. Ksapabutr et al., Fabrication of scandium stabilized zirconia thin film by electrostatic spray deposition technique for solid oxide fuel cell electrolyte. Thin Solid Films 518(22), 6518–6521 (2010)

    Google Scholar 

  104. Y. Zhang et al., Annealing effects on the phase and microstructure transformations of nanocrystalline (ZrO2)1-x(Sc2O3)x (x = 0.02-0.16) thin films deposited by sol-gel method. Solid State Commun. 122(7–8), 439–444 (2002)

    Google Scholar 

  105. C. Yang et al., Intermediate temperature micro-tubular SOFCs with enhanced performance and thermal stability. Electrochem. Commun. 34, 231–234 (2013)

    Google Scholar 

  106. B. He et al., Ni-Sm2O3 cermet anodes for intermediate-temperature solid oxide fuel cells with stabilized zirconia electrolytes. Int. J. Hydrogen Energy 36(9), 5589–5594 (2011)

    Google Scholar 

  107. J.H. Joo, G.M. Choi, Electrical conductivity of scandia-stabilized zirconia thin film. Solid State Ion. 179(21–26), 1209–1213 (2008)

    Google Scholar 

  108. R. Devanathan, S. Thevuthasan, J.D. Gale, Defect interactions and ionic transport in scandia stabilized zirconia. Phys. Chem. Chem. Phys. 11(26), 5506–5511 (2009)

    Google Scholar 

  109. H. Inaba, H. Tagawa, Ceria-based solid electrolytes. Solid State Ion. 83(1–2), 1–16 (1996)

    Google Scholar 

  110. Z. Bi et al., Electrochemical evaluation of La0.6Sr0.4CoO3-La0.45Ce0.55O2 composite cathodes for anode-supported La0.45Ce0.55O2-La0.9Sr0.1Ga0.8Mg0.2O2.85 bilayer electrolyte solid oxide fuel cells. Solid State Ion. 176(7–8), 655–661 (2005)

    Google Scholar 

  111. W.G. Wang, M. Mogensen, High-performance lanthanum-ferrite-based cathode for SOFC. Solid State Ion. 176(5–6), 457–462 (2005)

    Google Scholar 

  112. X. Xu et al., Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes. Solid State Ion. 176(17–18), 1513–1520 (2005)

    Google Scholar 

  113. M. Mogensen, N.M. Sammes, G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ion. 129(1–4), 63–94 (2000)

    Google Scholar 

  114. H. Yoshida et al., Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement. Solid State Ion. 140(3–4), 191–199 (2001)

    Google Scholar 

  115. K. Eguchi, Ceramic materials containing rare earth oxides for solid oxide fuel cell. J. Alloys Compd. 250(1–2), 486–491 (1997)

    Google Scholar 

  116. Y.-P. Fu, S.-B. Wen, C.-H. Lu, Preparation and characterization of Samaria-doped ceria electrolyte materials for solid oxide fuel cells. J. Am. Ceram. Soc. 91(1), 127–131 (2008)

    Google Scholar 

  117. W. Huang, P. Shuk, M. Greenblatt, Properties of sol-gel prepared Ce1-xSmxO2-x/2 solid electrolytes. Solid State Ion. 100(1–2), 23–27 (1997)

    Google Scholar 

  118. G.-B. Jung, T.-J. Huang, C.-L. Chang, Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte. J. Solid State Electrochem. 6(4), 225–230 (2002)

    Google Scholar 

  119. T. Kudo, H. Obayashi, Mixed electrical conduction in the fluorite-type Ce1 - xGdxO2 - x/2. J. Electrochem. Soc. 123(3), 415–419 (1976)

    Google Scholar 

  120. D.J. Seo et al., Synthesis and properties of Ce1-xGdxO2-x/2 solid solution prepared by flame spray pyrolysis. Mater. Res. Bull. 41(2), 359–366 (2006)

    Google Scholar 

  121. Z. Tianshu et al., Ionic conductivity in the CeO2-Gd2O3 system (0.05 < =Gd/Ce < =0.4) prepared by oxalate coprecipitation. Solid State Ion. 148(3–4), 567–573 (2002)

    Google Scholar 

  122. S. Zha, C. Xia, G. Meng, Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J. Power Sources 115(1), 44–48 (2003)

    Google Scholar 

  123. R.N. Blumenthal, F.S. Brugner, J.E. Garnier, The electrical conductivity of CaO-doped nonstoichiometric cerium dioxide from 700° to 1500°C. J. Electrochem. Soc. 120(9), 1230–1237 (1973)

    Google Scholar 

  124. H. Yahiro, K. Eguchi, H. Arai, Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ion. 36(1–2), 71–75 (1989)

    Google Scholar 

  125. I. Riess, M. Gödickemeier, L.J. Gauckler, Characterization of solid oxide fuel cells based on solid electrolytes or mixed ionic electronic conductors. Solid State Ion. 90(1–4), 91–104 (1996)

    Google Scholar 

  126. M. Godickemeier, L.J. Gauckler, Engineering of solid oxide fuel cells with ceria-based electrolytes. J. Electrochem. Soc. 145(2), 414–421 (1998)

    Google Scholar 

  127. B.C.H. Steele, Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ion. 129(1–4), 95–110 (2000)

    Google Scholar 

  128. C. Milliken, S. Guruswamy, A. Khandkar, Properties and performance of cation-doped ceria electrolyte materials in solid oxide fuel cell applications. J. Am. Ceram. Soc. 85(10), 2479–2486 (2002)

    Google Scholar 

  129. N. Kim, B.-H. Kim, D. Lee, Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte. J. Power Sources 90(2), 139–143 (2000)

    Google Scholar 

  130. D.L. Maricle, T.E. Swarr, S. Karavolis, Enhanced ceria – a low-temperature SOFC electrolyte. Solid State Ion. 52(1–3), 173–182 (1992)

    Google Scholar 

  131. A. Tsoga et al., Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells. Ionics 4(3), 234–240 (1998)

    Google Scholar 

  132. S.-G. Kim et al., Fabrication and characterization of a YSZ/YDC composite electrolyte by a sol-gel coating method. J. Power Sources 110(1), 222–228 (2002)

    Google Scholar 

  133. C. Brahim et al., Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering. J. Power Sources 156(1), 45–49 (2006)

    Google Scholar 

  134. M.D. Hurley, D.K. Hohnke, Mixed electrical conduction in Ce1-xCaxO2-x. J. Phys. Chem. Solid 41(12), 1349–1353 (1980)

    Google Scholar 

  135. D.Y. Wang et al., Oxygen-ion conductivity and defect interactions in yttria-doped ceria. Solid State Ion. 2(2), 95–105 (1981)

    Google Scholar 

  136. H. Yahiro et al., Electrical properties and microstructure in the system ceria-alkaline earth oxide. J. Mater. Sci. 23(3), 1036–1041 (1988)

    Google Scholar 

  137. Y. Gu et al., Sintering and electrical properties of coprecipitation prepared Ce0.8Y0.2O1.9 ceramics. Mater. Res. Bull. 35(2), 297–304 (2000)

    Google Scholar 

  138. B. Zhu et al., Cost-effective yttrium doped ceria-based composite ceramic materials for intermediate temperature solid oxide fuel cell applications. J. Mater. Sci. Lett. 20(7), 591–594 (2001)

    Google Scholar 

  139. F.-Y. Wang, S. Chen, S. Cheng, Gd3+ and Sm3+ co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells. Electrochem. Commun. 6(8), 743–746 (2004)

    Google Scholar 

  140. F.-Y. Wang et al., Study on Gd and Mg co-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Catal. Today 97(2–3), 189–194 (2004)

    Google Scholar 

  141. S. Omar, E.D. Wachsman, J.C. Nino, A co-doping approach towards enhanced ionic conductivity in fluorite-based electrolytes. Solid State Ion. 177(35–36), 3199–3203 (2006)

    Google Scholar 

  142. S. Omar, E.D. Wachsman, J.C. Nino, Higher ionic conductive ceria-based electrolytes for solid oxide fuel cells. Appl. Phys. Lett. 91(14), 144106-3 (2007)

    Google Scholar 

  143. X. Sha et al., Study on La and Y co-doped ceria-based electrolyte materials. J. Alloys Compd. 428(1–2), 59–64 (2007)

    Google Scholar 

  144. Y. Tsung-Her, C. Chen-Chia, Ionic conductivity investigation in samarium and strontium co-doped ceria system. Phys. Scripta 2007(T129), 303 (2007)

    Google Scholar 

  145. P. Devi, S. Banerjee, Search for new oxide-ion conducting materials in the ceria family of oxides. Ionics 14(1), 73–78 (2008)

    Google Scholar 

  146. X. Guan et al., High performance Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. Mater. Res. Bull. 43(4), 1046–1054 (2008)

    Google Scholar 

  147. S. Omar, E.D. Wachsman, J.C. Nino, Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ion. 178(37–38), 1890–1897 (2008)

    Google Scholar 

  148. Y. Zheng et al., La and Ca co-doped ceria-based electrolyte materials for IT-SOFCs. Mater. Res. Bull. 44(8), 1717–1721 (2009)

    Google Scholar 

  149. Y. Zheng et al., The effect of Sr on the properties of Y-doped ceria electrolyte for IT-SOFCs. J. Alloys Compd. 486(1–2), 586–589 (2009)

    Google Scholar 

  150. B. Li, X. Wei, W. Pan, Improved electrical conductivity of Ce0.9Gd0.1O1.95 and Ce0.9Sm0.1O1.95 by co-doping. Int. J. Hydrogen Energy 35(7), 3018–3022 (2010)

    Google Scholar 

  151. T.S. Zhang et al., Aging behavior and ionic conductivity of ceria-based ceramics: a comparative study. Solid State Ion. 170(3–4), 209–217 (2004)

    Google Scholar 

  152. T.S. Zhang et al., High-temperature aging behavior of Gd-doped ceria. Electrochem. Solid State Lett. 7(6), J13–J15 (2004)

    Google Scholar 

  153. T.S. Zhang et al., Effects of dopant concentration and aging on the electrical properties of Y-doped ceria electrolytes. Solid State Sci. 5(11–12), 1505–1511 (2003)

    Google Scholar 

  154. S. Wang et al., Nonstoichiometry of Ce0.9Gd0.1O1.95-x. Solid State Ion. 107(1–2), 73–79 (1998)

    Google Scholar 

  155. S. Wang et al., Electrical and ionic conductivity of Gd-doped ceria. J. Electrochem. Soc. 147(10), 3606–3609 (2000)

    Google Scholar 

  156. V.V. Kharton et al., Ceria-based materials for solid oxide fuel cells. J. Mater. Sci. 36(5), 1105–1117 (2001)

    Google Scholar 

  157. E. Jud, L. Gauckler, The effect of cobalt oxide addition on the conductivity of Ce0.9Gd0.1O1.95. J. Electroceram. 15(2), 159–166 (2005)

    Google Scholar 

  158. J.R. Jurado, Present several items on ceria-based ceramic electrolytes: synthesis, additive effects, reactivity and electrochemical behaviour. J. Mater. Sci. 36(5), 1133–1139 (2001)

    Google Scholar 

  159. A. Sin et al., Preparation and sintering of Ce1-xGdxO2-x/2 nanopowders and their electrochemical and EPR characterization. Solid State Ion. 175(1–4), 361–366 (2004)

    Google Scholar 

  160. H.S. Kang et al., The characteristics of nano-sized Gd-doped CeO2 particles prepared by spray pyrolysis. J. Alloys Compd. 398(1–2), 240–244 (2005)

    Google Scholar 

  161. P. Datta, P. Majewski, F. Aldinger, Study of gadolinia-doped ceria solid electrolyte surface by XPS. Mater Charact 60(2), 138–143 (2009)

    Google Scholar 

  162. Z. He et al., Densification and grain growth during early-stage sintering of Ce0.9Gd0.1O1.95-δ in a reducing atmosphere. Acta Mater. 58(11), 3860–3866 (2010)

    Google Scholar 

  163. M. Sahibzada et al., Development of solid oxide fuel cells based on a Ce(Gd)O2-x electrolyte film for intermediate temperature operation. Catal. Today 38(4), 459–466 (1997)

    Google Scholar 

  164. B. Dalslet et al., Assessment of doped ceria as electrolyte. J. Solid State Electrochem. 10(8), 547–561 (2006)

    Google Scholar 

  165. H. Yahiro et al., Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure. J. Appl. Electrochem. 18(4), 527–531 (1988)

    Google Scholar 

  166. T. Inoue et al., Study of a solid oxide fuel cell with a ceria-based solid electrolyte. Solid State Ion. 35(3–4), 285–291 (1989)

    Google Scholar 

  167. K. Eguchi et al., Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ion. 52(1–3), 165–172 (1992)

    Google Scholar 

  168. S. Gupta et al., Influence of samaria doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Sens. Actuators B Chem. 139(2), 380–386 (2009)

    Google Scholar 

  169. Z. Zhan et al., AC impedance investigation of samarium-doped ceria. J. Electrochem. Soc. 148(5), A427–A432 (2001)

    Google Scholar 

  170. Z.Q. Yu et al., Conductivity of oriented Samaria-doped ceria thin films grown by oxygen-plasma-assisted molecular beam epitaxy. Electrochem. Solid State Lett. 11(5), B76–B78 (2008)

    Google Scholar 

  171. C. Mansilla et al., Microstructure and transport properties of ceria and samaria doped ceria thin films prepared by EBE-IBAD. Surf. Coat. Technol. 202(4–7), 1256–1261 (2007)

    Google Scholar 

  172. D. Bera et al., Growth and characterization of highly oriented gadolinia-doped ceria(111) thin films on zirconia(111)/sapphire(0001) substrates. Thin Solid Films 516(18), 6088–6094 (2008)

    Google Scholar 

  173. S. Cho et al., Microstructural and electrical properties of Ce0.9Gd0.1O1.95 thin-film electrolyte in solid-oxide fuel cells. J. Mater. Res. 26(07), 854–859 (2011)

    Google Scholar 

  174. C. Ding et al., A simple, rapid spray method for preparing anode-supported solid oxide fuel cells with GDC electrolyte thin films. J. Membr. Sci. 350(1–2), 1–4 (2010)

    Google Scholar 

  175. E. Gourba et al., Characterisation of thin films of ceria-based electrolytes for intermediate temperature — solid oxide fuel cells (IT-SOFC). Ionics 9(1), 15–20 (2003)

    Google Scholar 

  176. Y.J. Leng et al., Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ion. 170(1–2), 9–15 (2004)

    Google Scholar 

  177. D.-H. Myung et al., The effect of an ultra-thin zirconia blocking layer on the performance of a 1-μm-thick gadolinia-doped ceria electrolyte solid-oxide fuel cell. J. Power Sources 206, 91–96 (2012)

    Google Scholar 

  178. T. Suzuki, I. Kosacki, H.U. Anderson, Microstructure-electrical conductivity relationships in nanocrystalline ceria thin films. Solid State Ion. 151(1–4), 111–121 (2002)

    Google Scholar 

  179. A. Infortuna, A.S. Harvey, L.J. Gauckler, Microstructures of CGO and YSZ thin films by pulsed laser deposition. Adv. Funct. Mater. 18(1), 127–135 (2008)

    Google Scholar 

  180. J.H. Joo, G.M. Choi, Electrical conductivity of thin film ceria grown by pulsed laser deposition. J. Eur. Ceram. Soc. 27(13–15), 4273–4277 (2007)

    Google Scholar 

  181. Y.-L. Kuo et al., Gadolinia-doped ceria films deposited by RF reactive magnetron sputtering. Solid State Ion. 180(26–27), 1421–1428 (2009)

    Google Scholar 

  182. S.-E. Lin et al., Characterization of electrolyte films deposited by using RF magnetron sputtering a 20 mol% gadolinia-doped ceria target. Thin Solid Films 518(24), 7229–7232 (2010)

    Google Scholar 

  183. G. Meng et al., Application of novel aerosol-assisted chemical vapor deposition techniques for SOFC thin films. Solid State Ion. 175(1–4), 29–34 (2004)

    Google Scholar 

  184. M.V.F. Schlupp et al., Gadolinia doped ceria thin films prepared by aerosol assisted chemical vapor deposition and applications in intermediate-temperature solid oxide fuel cells. Fuel Cells 13(5), 658–665 (2013)

    Google Scholar 

  185. H.Z. Song et al., Aerosol-assisted MOCVD growth of Gd2O3-doped CeO2 thin SOFC electrolyte film on anode substrate. Solid State Ion. 156(3–4), 249–254 (2003)

    Google Scholar 

  186. Y.S. Hong et al., Fabrication and characterization GDC electrolyte thin films by e-beam technique for IT-SOFC. Curr. Appl. Phys. 11(5 Suppl), S163–S168 (2011)

    Google Scholar 

  187. M.G. Chourashiya, L.D. Jadhav, Synthesis and characterization of 10%Gd doped ceria (GDC) deposited on NiO-GDC anode-grade-ceramic substrate as half cell for IT-SOFC. Int. J. Hydrogen Energy 36(22), 14984–14995 (2011)

    Google Scholar 

  188. Y.-G. Choi et al., Ceria-based electrolyte reinforced by sol–gel technique for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 38(23), 9867–9872 (2013)

    Google Scholar 

  189. S. Cho et al., High power density thin film SOFCs with YSZ/GDC bilayer electrolyte. Electrochim. Acta 56(16), 5472–5477 (2011)

    Google Scholar 

  190. H. Choi, G. Cho, S.-W. Cha, Fabrication and characterization of anode supported YSZ/GDC bilayer electrolyte SOFC using dry press process. Int. J. Prec. Eng. Manuf. Green Tech. 1(2), 95–99 (2014)

    Google Scholar 

  191. T. Mukai et al., Fabrication of Y2O3-doped zirconia/gadolinia-doped ceria bilayer electrolyte thin film SOFC cells of SOFCs by single-pulsed laser deposition processing. J. Fuel Cell Sci. Tech. 10(6), 061006 (2013)

    Google Scholar 

  192. H.-S. Noh et al., The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells. J. Power Sources 247, 105–111 (2014)

    Google Scholar 

  193. K.-R. Lee et al., Lattice distortion effect on electrical properties of GDC thin films: experimental evidence and computational simulation. Solid State Ion. 229, 45–53 (2012)

    Google Scholar 

  194. D.A. Andersson et al., Optimization of ionic conductivity in doped ceria. Proc. Natl. Acad. Sci. U. S. A. 103(10), 3518–3521 (2006)

    Google Scholar 

  195. G. Laukaitis, J. Dudonis, D. Virbukas, Samarium doped cerium oxide thin films deposited by e-beam technique. Surf. Coat. Technol. 204(12–13), 2028–2031 (2010)

    Google Scholar 

  196. Z.Q. Yu et al., Growth and structure of epitaxial Ce0.8Sm0.2O1.9 by oxygen-plasma-assisted molecular beam epitaxy. J. Cryst. Growth 310(10), 2450–2456 (2008)

    Google Scholar 

  197. S. Sanna et al., Fabrication and electrochemical properties of epitaxial samarium-doped ceria films on SrTiO3-buffered MgO substrates. Adv. Funct. Mater. 19(11), 1713–1719 (2009)

    Google Scholar 

  198. N. Ai et al., Low temperature solid oxide fuel cells based on Sm0.2Ce0.8O1.9 films fabricated by slurry spin coating. J. Power Sources 159(1), 637–640 (2006)

    Google Scholar 

  199. R. Hui et al., Fabrication of ceramic films for solid oxide fuel cells via slurry spin coating technique. J. Power Sources 172(2), 840–844 (2007)

    Google Scholar 

  200. R.-J. Yang et al., Fabrication and characterization of a Sm0.2Ce0.8O1.9 electrolyte film by the spin-coating method for a low-temperature anode-supported solid oxide fuel cells. J. Power Sources 206, 111–118 (2012)

    Google Scholar 

  201. Y. Yoo, Fabrication and characterization of thin film electrolytes deposited by RF magnetron sputtering for low temperature solid oxide fuel cells. J. Power Sources 160(1), 202–206 (2006)

    Google Scholar 

  202. J. Maier, Defect chemistry and conductivity effects in heterogeneous solid electrolytes. J. Electrochem. Soc. 134(6), 1524–1535 (1987)

    Google Scholar 

  203. J. Maier, Ionic conduction in space charge regions. Prog. Solid State Chem. 23(3), 171–263 (1995)

    Google Scholar 

  204. S. Ramanathan, Interface-mediated ultrafast carrier conduction in oxide thin films and superlattices for energy. J. Vac. Sci. Technol. A 27(5), 1126–1134 (2009)

    Google Scholar 

  205. X. Guo, J. Maier, Comprehensive modeling of ion conduction of nanosized CaF2/BaF2 multilayer heterostructures. Adv. Funct. Mater. 19(1), 96–101 (2009)

    Google Scholar 

  206. N. Sata et al., Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408(6815), 946–949 (2000)

    Google Scholar 

  207. S. Azad et al., Growth and Characterization of Single-Crystal Multilayer Nanostructures for Fast Ion Conduction, in Nanotechnology and the Environment (American Chemical Society, Washington, DC, 2004), pp. 133–141

    Google Scholar 

  208. A. Cavallaro et al., Electronic nature of the enhanced conductivity in YSZ-STO multilayers deposited by PLD. Solid State Ion. 181(13–14), 592–601 (2010)

    Google Scholar 

  209. C. Korte et al., Ionic conductivity and activation energy for oxygen ion transport in superlattices-the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3. Phys. Chem. Chem. Phys. 10(31), 4623–4635 (2008)

    Google Scholar 

  210. A. Peters et al., Ionic conductivity and activation energy for oxygen ion transport in superlattices – the multilayer system CSZ (ZrO2 + CaO) / Al2O3. Solid State Ion. 178(1–2), 67–76 (2007)

    Google Scholar 

  211. N. Schichtel et al., Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films-theoretical considerations and experimental studies. Phys. Chem. Chem. Phys. 11(17), 3043–3048 (2009)

    Google Scholar 

  212. C.M. Wang et al., Microstructure of ZrO2-CeO2 hetero-multi-layer films grown on YSZ substrate. Acta Mater. 53(7), 1921–1929 (2005)

    Google Scholar 

  213. C.M. Wang et al., Distribution of oxygen vacancies and gadolinium dopants in ZrO2-CeO2 multi-layer films grown on [alpha]-Al2O3. Solid State Ion. 177(15–16), 1299–1306 (2006)

    Google Scholar 

  214. Y. Wang et al., Microstructure and ionic conductivity of alternating-multilayer structured Gd-doped ceria and zirconia thin films. J. Mater. Sci. 44(8), 2021–2026 (2009)

    Google Scholar 

  215. X. Guo, Comment on “colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures”. Science 324(5926), 465 (2009)

    Google Scholar 

  216. T.J. Pennycook et al., Seeing oxygen disorder in YSZ/SrTiO3 colossal ionic conductor 1518 heterostructures using EELS. Eur. Phys. J. Appl. Phys. 54(3), 33507 (2011)

    Google Scholar 

  217. T.J. Pennycook et al., Origin of colossal ionic conductivity in oxide multilayers: interface induced sublattice disorder. Phys. Rev. Lett. 104(11), 115901 (2010)

    Google Scholar 

  218. C. Korte et al., Influence of interface structure on mass transport in phase boundaries between different ionic materials. Monatsh. Chem. 140(9), 1069–1080 (2009)

    Google Scholar 

  219. R. Hull, J.C. Bean, Misfit dislocations in lattice-mismatched epitaxial films. Crit. Rev. Solid State Mater. Sci. 17(6), 507–546 (1992)

    Google Scholar 

  220. J.R. Willis, S.C. Jain, R. Bullough, The energy of an array of dislocations: implications for strain relaxation in semiconductor heterostructures. Philos. Mag. A 62(1), 115–129 (1990)

    Google Scholar 

  221. G. Gutekunst, J. Mayer, M. Rühle, Atomic structure of epitaxial Nb-Al2O3 interfaces I. Coherent regions. Philos. Mag. A 75(5), 1329–1355 (1997)

    Google Scholar 

  222. G. Gutekunst et al., Atomic structure of epitaxial Nb-Al2O3 interfaces II. Misfit dislocations. Philos. Mag. A 75(5), 1357–1382 (1997)

    Google Scholar 

  223. S.I. Yi et al., Morphological and structural investigation of the early stages of epitaxial growth of α-Fe2O3 (0001) on α-Al2O3 (0001) by oxygen-plasma-assisted MBE. Surf. Sci. 443(3), 212–220 (1999)

    Google Scholar 

  224. D.-J. Kim, Lattice parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] solid solutions. J. Am. Ceram. Soc. 72(8), 1415–1421 (1989)

    Google Scholar 

Download references

Acknowledgements

A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the U.S. DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjula I. Nandasiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nandasiri, M.I., Thevuthasan, S. (2015). State-of-the-Art Thin Film Electrolytes for Solid Oxide Fuel Cells. In: Babu Krishna Moorthy, S. (eds) Thin Film Structures in Energy Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-14774-1_6

Download citation

Publish with us

Policies and ethics