Skip to main content

Fast Algorithms for Refined Parameterized Telescoping in Difference Fields

  • Chapter
  • First Online:
Computer Algebra and Polynomials

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8942))

Abstract

Parameterized telescoping (including telescoping and creative telescoping) and refined versions of it play a central role in the research area of symbolic summation. In 1981 Karr introduced \(\varPi \varSigma \)-fields, a general class of difference fields, that enables one to consider this problem for indefinite nested sums and products covering as special cases, e.g., the (\(q\)–)hypergeometric case and their mixed versions. This survey article presents the available algorithms in the framework of \(\varPi \varSigma \)-extensions and elaborates new results concerning efficiency.

C. Schneider—Supported by the Austrian Science Fund (FWF) grants P20347-N18 and SFB F50 (F5009-N15) and by the EU Network LHCPhenoNet PITN-GA-2010-264564.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Karr’s \(\varSigma \)-extensions [27] are given by generators with \(\sigma (t)=\alpha \,t+\beta \) with extra conditions on \(\alpha \). For simplicity, we work with \(\varSigma ^*\)-extensions that are relevant in symbolic summation.

  2. 2.

    \(({\mathbb {K}},{\sigma })\) is \(\sigma \)-computable (see Definition 5) iff \(\mathbb {K}\) is \(\sigma \)-computable (see Definition 4); we refer to [27, 30].

  3. 3.

    To execute the steps above one needs the property that \(({\mathbb {G}},{\sigma })\) is FPLDE-solvable. However, in the following we are only interested in the the exploration of the possible reduction processes with the corresponding reduction vectors without the need to calculate them explicitly. We therefore drop the FPLDE-solvability in the statements below.

References

  1. Ablinger, J., Blümlein, J., Hasselhuhn, A., Klein, S., Schneider, C., Wissbrock, F.: Massive 3-loop ladder diagrams for quarkonic local operator matrix elements. Nucl. Phys. B. 864, 52–84 (2012). ArXiv:1206.2252v1 [hep-ph]

    Article  MATH  Google Scholar 

  2. Ablinger, J., Blümlein, J., Klein, S., Schneider, C., Wissbrock, F.: The \(O(\alpha _s^3)\) massive operator matrix elements of \(O(n_f)\) for the structure function \(F_2(x, Q^2)\) and transversity. Nucl. Phys. B. 844, 26–54 (2011). ArXiv:1008.3347 [hep-ph]

    Article  MATH  Google Scholar 

  3. Ablinger, J., Blümlein, J., Schneider, C.: Harmonic sums and polylogarithms generated by cyclotomic polynomials. J. Math. Phys. 52(10), 1–52 (2011). arXiv:1007.0375 [hep-ph]

    Article  Google Scholar 

  4. Ablinger, J., Blümlein, J., Schneider, C.: Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms. J. Math. Phys. 54(8), 1–74 (2013). ArXiv:1302.0378 [math-ph]

    Article  Google Scholar 

  5. Abramov, S.A.: On the summation of rational functions. Zh. vychisl. mat. Fiz. 11, 1071–1074 (1971)

    MATH  MathSciNet  Google Scholar 

  6. Abramov, S.A.: The rational component of the solution of a first-order linear recurrence relation with a rational right-hand side. U.S.S.R. Comput. Math. Math. Phys. 15, 216–221 (1975). Transl. from Zh. vychisl. mat. mat. fiz. 15, 1035–1039 (1975)

    Article  MathSciNet  Google Scholar 

  7. Abramov, S.A.: Rational solutions of linear differential and difference equations with polynomial coefficients. U.S.S.R. Comput. Math. Math. Phys. 29(6), 7–12 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Abramov, S.A., Bronstein, M., Petkovšek, M., Schneider, C.: (2015, In preparation)

    Google Scholar 

  9. Abramov, S.A., Petkovšek, M.: D’Alembertian solutions of linear differential and difference equations. In: von zur Gathen, J. (ed.) Proceedings of ISSAC 1994, pp. 169–174. ACM Press (1994)

    Google Scholar 

  10. Abramov, S.A., Petkovšek, M.: Rational normal forms and minimal decompositions of hypergeometric terms. J. Symbolic Comput. 33(5), 521–543 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Abramov, S.A., Petkovšek, M.: Polynomial ring automorphisms, rational \((w,\sigma )\)-canonical forms, and the assignment problem. J. Symbolic Comput. 45(6), 684–708 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Andrews, G.E., Paule, P., Schneider, C.: Plane partitions VI: stembridge’s TSPP theorem. Adv. Appl. Math. 34(4), 709–739 (2005). Special Issue Dedicated to Dr. David P. Robbins. Edited by D. Bressoud

    Article  MATH  MathSciNet  Google Scholar 

  13. Bauer, A., Petkovšek, M.: Multibasic and mixed hypergeometric Gosper-type algorithms. J. Symbolic Comput. 28(4–5), 711–736 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bierenbaum, I., Blümlein, J., Klein, S., Schneider, C.: Two-loop massive operator matrix elements for unpolarized heavy flavor production to \(O(\epsilon )\). Nucl. Phys. B. 803(1–2), 1–41 (2008). arXiv:hep-ph/0803.0273

    Article  MATH  Google Scholar 

  15. Blümlein, J., Hasselhuhn, A., Klein, S., Schneider, C.: The \(O(\alpha _s^3 n_f T_F^2 C_{A, F})\) contributions to the gluonic massive operator matrix elements. Nucl. Phys. B. 866, 196–211 (2013)

    Article  MATH  Google Scholar 

  16. Blümlein, J., Klein, S., Schneider, C., Stan, F.: A symbolic summation approach to feynman integral calculus. J. Symbolic Comput. 47, 1267–1289 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Blümlein, J., Kurth, S.: Harmonic sums and Mellin transforms up to two-loop order. Phys. Rev. D60, 014018 (1999)

    Google Scholar 

  18. Bronstein, M.: On solutions of linear ordinary difference equations in their coefficient field. J. Symbolic Comput. 29(6), 841–877 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chen, S., Jaroschek, M., Kauers, M., Singer, M.F.: Desingularization explains order-degree curves for ore operators. In: Kauers, M. (ed.) Proceedings of ISSAC 2013, pp. 157–164 (2013)

    Google Scholar 

  20. Chen, S., Kauers, M.: Order-degree curves for hypergeometric creative telescoping. In: van der Hoeven, J., van Hoeij, M. (eds.) Proceedings of ISSAC 2012, pp. 122–129 (2012)

    Google Scholar 

  21. Chyzak, F.: An extension of Zeilberger’s fast algorithm to general holonomic functions. Discrete Math. 217, 115–134 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cohn, R.M.: Difference Algebra. Interscience Publishers, John Wiley & Sons, New York (1965)

    MATH  Google Scholar 

  23. Driver, K., Prodinger, H., Schneider, C., Weideman, J.A.C.: Padé approximations to the logarithm III: alternative methods and additional results. Ramanujan J. 12(3), 299–314 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Eröcal, B.: Algebraic extensions for summation in finite terms. Ph.D. thesis, RISC, Johannes Kepler University, Linz (2011)

    Google Scholar 

  25. Gosper, R.W.: Decision procedures for indefinite hypergeometric summation. Proc. Nat. Acad. Sci. U.S.A. 75, 40–42 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hendriks, P.A., Singer, M.F.: Solving difference equations in finite terms. J. Symbolic Comput. 27(3), 239–259 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Karr, M.: Summation in finite terms. J. ACM 28, 305–350 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  28. Karr, M.: Theory of summation in finite terms. J. Symbolic Comput. 1, 303–315 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kauers, M., Schneider, C.: Application of unspecified sequences in symbolic summation. In: Dumas, J. (ed.) Proceedings of ISSAC 2006, pp. 177–183. ACM Press (2006)

    Google Scholar 

  30. Kauers, M., Schneider, C.: Indefinite summation with unspecified summands. Discrete Math. 306(17), 2021–2140 (2006)

    Article  MathSciNet  Google Scholar 

  31. Kauers, M., Schneider, C.: Symbolic summation with radical expressions. In: Brown, C. (ed.) Proceedings of ISSAC 2007, pp. 219–226 (2007)

    Google Scholar 

  32. Koornwinder, T.H.: On Zeilberger’s algorithm and its \(q\)-analogue. J. Comp. Appl. Math. 48, 91–111 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Koutschan, C.: Creative telescoping for holonomic functions. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Texts and Monographs in Symbolic Computation, pp. 171–194. Springer (2013). ArXiv:1307.4554 [cs.SC]

  34. Liouville, J.: Mémoire sur l’intégration d’une classe de fonctions transcendantes. J. Reine Angew. Math. 13, 93–118 (1835)

    Article  MATH  Google Scholar 

  35. Moch, S.O., Uwer, P., Weinzierl, S.: Nested sums, expansion of transcendental functions, and multiscale multiloop integrals. J. Math. Phys. 6, 3363–3386 (2002)

    Article  MathSciNet  Google Scholar 

  36. Osburn, R., Schneider, C.: Gaussian hypergeometric series and extensions of supercongruences. Math. Comp. 78(265), 275–292 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Paule, P.: Greatest factorial factorization and symbolic summation. J. Symbolic Comput. 20(3), 235–268 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  38. Paule, P.: Contiguous relations and creative telescoping, p. 33. Unpublished manuscript (2001)

    Google Scholar 

  39. Paule, P., Riese, A.: A Mathematica q-analogue of Zeilberger’s algorithm based on an algebraically motivated aproach to \(q\)-hypergeometric telescoping. In: Ismail, M., Rahman, M. (eds.) Special Functions, q-Series and Related Topics, vol. 14, pp. 179–210. AMS (1997)

    Google Scholar 

  40. Paule, P., Schneider, C.: Computer proofs of a new family of harmonic number identities. Adv. Appl. Math. 31(2), 359–378 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Paule, P., Schorn, M.: A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symbolic Comput. 20(5–6), 673–698 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  42. Koutschan, C., Paule, P., Suslov, S.K.: Relativistic coulomb integrals and Zeilberger’s holonomic systems approach II. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds.) AADIOS 2012. LNCS, vol. 8372, pp. 135–145. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  43. Petkovšek, M.: Hypergeometric solutions of linear recurrences with polynomial coefficients. J. Symbolic Comput. 14(2–3), 243–264 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  44. Petkovšek, M., Wilf, H.S., Zeilberger, D.: \(A=B\). A. K. Peters, Wellesley (1996)

    Google Scholar 

  45. Petkovšek, M., Zakrajšek, H.: Solving linear recurrence equations with polynomial coefficients. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Texts and Monographs in Symbolic Computation, pp. 259–284. Springer (2013)

    Google Scholar 

  46. Pirastu, R., Strehl, V.: Rational summation and Gosper-Petkovšek representation. J. Symbolic Comput. 20(5–6), 617–635 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  47. Prodinger, H., Schneider, C., Wagner, S.: Unfair permutations. Europ. J. Comb. 32, 1282–1298 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  48. Schneider, C.: Symbolic summation in difference fields. Technical report 01–17, RISC-Linz, J. Kepler University (2001). Ph.D. Thesis

    Google Scholar 

  49. Schneider, C.: Solving parameterized linear difference equations in \(\mathit{\Pi }{\varSigma }\)-fields. SFB-Report 02–19, J. Kepler University, Linz (2002)

    Google Scholar 

  50. Schneider, C.: A collection of denominator bounds to solve parameterized linear difference equations in \(\mathit{\Pi }{\varSigma }\)-extensions. An. Univ. Timişoara Ser. Mat.-Inform. 42(2), 163–179 (2004). Extended version of Proceedings of SYNASC 2004

    Google Scholar 

  51. Schneider, C.: Symbolic summation with single-nested sum extensions. In: Gutierrez, J. (ed.) Proceedings of ISSAC 2004, pp. 282–289. ACM Press (2004)

    Google Scholar 

  52. Schneider, C.: Degree bounds to find polynomial solutions of parameterized linear difference equations in \(\mathit{\Pi }{\varSigma }\)-fields. Appl. Algebra Engrg. Comm. Comput. 16(1), 1–32 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  53. Schneider, C.: Finding telescopers with minimal depth for indefinite nested sum and product expressions. In: Kauers, M. (ed.) Proceedings of ISSAC 2005, pp. 285–292. ACM (2005)

    Google Scholar 

  54. Schneider, C.: A new Sigma approach to multi-summation. Adv. Appl. Math. 34(4), 740–767 (2005)

    Article  MATH  Google Scholar 

  55. Schneider, C.: Product representations in \(\mathit{\Pi }{\varSigma }\)-fields. Ann. Comb. 9(1), 75–99 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  56. Schneider, C.: Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ. Eqn. Appl. 11(9), 799–821 (2005)

    Article  MATH  Google Scholar 

  57. Schneider, C.: Simplifying sums in \(\mathit{\Pi }{\varSigma }\)-Extensions. J. Algebra Appl. 6(3), 415–441 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  58. Schneider, C.: Symbolic summation assists combinatorics. Sém. Lothar. Combin. 56, 1–36 (2007). Article B56b

    Google Scholar 

  59. Schneider, C.: A refined difference field theory for symbolic summation. J. Symbolic Comput. 43(9), 611–644 (2008). arXiv:0808.2543v1

    Article  MATH  MathSciNet  Google Scholar 

  60. Schneider, C.: A symbolic summation approach to find optimal nested sum representations. In: Carey, A., Ellwood, D., Paycha, S., Rosenberg, S. (eds.) Motives, Quantum Field Theory, and Pseudodifferential Operators, Clay Mathematics Proceedings, vol. 12, pp. 285–308. Amer. Math. Soc. (2010). ArXiv:0808.2543

  61. Schneider, C.: Parameterized telescoping proves algebraic independence of sums. Ann. Comb. 14(4), 533–552 (2010). arXiv:0808.2596

    Article  MATH  MathSciNet  Google Scholar 

  62. Schneider, C.: Structural theorems for symbolic summation. Appl. Algebra Engrg. Comm. Comput. 21(1), 1–32 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  63. Schneider, C.: Modern summation methods for loop integrals in quantum field theory: The packages Sigma, EvaluateMultiSums and SumProduction. In: Proceedings of ACAT 2013, To appear in J. Phys.: Conf. Ser., pp. 1–17 (2014). ArXiv:1310.0160 [cs.SC]

  64. Schneider, C.: Simplifying multiple sums in difference fields. In: Schneider, C., Blümlein, J. (eds.) Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions. Texts and Monographs in Symbolic Computation, pp. 325–360. Springer (2013). ArXiv:1304.4134 [cs.SC]

  65. Vermaseren, J.A.M.: Harmonic sums, Mellin transforms and integrals. Int. J. Mod. Phys. A14, 2037–2976 (1999)

    Article  MathSciNet  Google Scholar 

  66. Zeilberger, D.: The method of creative telescoping. J. Symbolic Comput. 11, 195–204 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank the referee for the very careful reading and the valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schneider, C. (2015). Fast Algorithms for Refined Parameterized Telescoping in Difference Fields. In: Gutierrez, J., Schicho, J., Weimann, M. (eds) Computer Algebra and Polynomials. Lecture Notes in Computer Science(), vol 8942. Springer, Cham. https://doi.org/10.1007/978-3-319-15081-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15081-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15080-2

  • Online ISBN: 978-3-319-15081-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics