Skip to main content

Embryonic Diapause and Maternal Recognition of Pregnancy in Diapausing Mammals

  • Chapter
Book cover Regulation of Implantation and Establishment of Pregnancy in Mammals

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 216))

Abstract

The dynamic nature of early embryonic growth is at odds with the phenomenon of mammalian embryonic diapause, because embryos in diapause are in a state of suspended animation of varying duration. The signals that control embryonic diapause differ between species, but in all cases, it acts to synchronise reproduction with external factors to maximise the survival of the offspring.

This chapter provides an overview of current understanding of the control of embryonic diapause, with an emphasis on the three species about which most is known, namely, the mouse, the mink and the tammar wallaby.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken RJ (1981) Aspects of delayed implantation in the roe deer (Capreolus capreolus). J Reprod Fertil Suppl 29:83–95

    CAS  PubMed  Google Scholar 

  • Ammit AJ, O’Neill C (1991) Comparison of a radioimmunoassay and bioassay for embryo-derived platelet-activating factor. Hum Reprod 6:872–878

    CAS  PubMed  Google Scholar 

  • Badwaik NK, Rasweiler JJI (2001) Altered trophoblastic differentiation and increased trophoblastic invasiveness during delayed development in the short-tailed fruit bat, Carollia perspicillata. Placenta 22:124–144

    Article  CAS  PubMed  Google Scholar 

  • Batlle-Morera L, Smith A, Nichols J (2008) Parameters influencing derivation of embryonic stem cells from murine embryos. Genesis 46:758–767

    Article  PubMed  Google Scholar 

  • Bhatt H, Brunet LJ, Stewart CL (1991) Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci U S A 88:11408–11412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bourdiec A, Calvo E, Rao CV, Akoum A (2013) Transcriptome analysis reveals new insights into the modulation of endometrial stromal cell receptive phenotype by embryo-derived signals interleukin-1 and human chorionic gonadotropin: possible involvement in early embryo implantation. PLoS One 8, e64829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brinklow BR, Loudon AS (1993) Gestation periods in the Pere David’s deer (Elaphurus davidianus): evidence for embryonic diapause or delayed development. Reprod Fertil Dev 5:567–575

    Article  CAS  PubMed  Google Scholar 

  • Canivenc R, Bonnin M (1980) Environmental control of delayed implantation in the European badger (Meles meles). J Reprod Fertil Suppl 29:25–33

    Google Scholar 

  • Cha J, Dey SK (2014) Cadence of procreation: orchestrating embryo-uterine interactions. Semin Cell Dev Biol 34C:56–64

    Article  Google Scholar 

  • Cha J, Sun X, Dey SK (2012) Mechanisms of implantation: strategies for successful pregnancy. Nat Med 18:1754–1767

    Article  CAS  PubMed  Google Scholar 

  • Cha J, Sun X, Bartos A, Fenelon J, Lefevre P, Daikoku T et al (2013) A new role for muscle segment homeobox genes in mammalian embryonic diapause. Open Biol 3:130035

    Article  PubMed Central  PubMed  Google Scholar 

  • Cha J, Burnum-Johnson KE, Bartos A, Li Y, Baker ES, Tilton SC, Webb-Robertson B-JM, Piehowski PD, Monroe ME, Jegga AG et al (2015) Muscle segment homeobox genes direct embryonic diapause by limiting inflammation in the uterus. J Biol Chem. doi:10.1074/jbc.M115.655001, Epub April 30th 2015

    Google Scholar 

  • Chami O, Megevand A, Ott T, Bazer F, O’Neill C (1999) Platelet-activating factor may act as an endogenous pulse generator for sheep of luteolytic PGF2α release. Am J Physiol 276:E783–E792

    CAS  PubMed  Google Scholar 

  • Chen JR, Cheng JG, Shatzer T, Sewell L, Hernandez L, Stewart CL (2000) Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology 141:4365–4372

    CAS  PubMed  Google Scholar 

  • Daikoku T, Cha J, Sun X, Tranguch S, Xie H, Fujita T et al (2011) Conditional deletion of Msx homeobox genes in the uterus inhibits blastocyst implantation by altering uterine receptivity. Dev Cell 21:1014–1025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Das SK, Wang XN, Paria BC, Damm D, Abraham JA, Klagsbrun M et al (1994) Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development 120:1071–1083

    CAS  PubMed  Google Scholar 

  • Dey SK, Lim H (2006) Implantation. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction, vol 1, 3rd edn. Elsevier/Academic, New York, pp 147–188

    Chapter  Google Scholar 

  • Dey SK, Lim H, Das SK, Reese J, Paria BC, Daikoku T et al (2004) Molecular cues to implantation. Endocr Rev 25:341–373

    Article  CAS  PubMed  Google Scholar 

  • Enders AC, Schlafke S, Hubbard NE, Mead RA (1986) Morphological changes in the blastocyst of the western spotted skunk during activation from delayed implantation. Biol Reprod 34:423–437

    Article  CAS  PubMed  Google Scholar 

  • Fenelon JC, Banerjee A, Murphy BD (2014a) Embryonic diapause: development on hold. Int J Dev Biol 58:163–174

    Article  PubMed  Google Scholar 

  • Fenelon JC, Shaw G, O’Neill C, Frankenberg S, Renfree MB (2014b) Paf receptor expression in the marsupial embryo and endometrium during embryonic diapause. Reproduction 147:21–31

    Article  CAS  PubMed  Google Scholar 

  • Flint AP (1995) Interferon, the oxytocin receptor and the maternal recognition of pregnancy in ruminants and non-ruminants: a comparative approach. Reprod Fertil Dev 7:313–318

    Article  CAS  PubMed  Google Scholar 

  • Flint AP, Renfree MB (1982) Oestradiol-17β in the blood during seasonal reactivation of the diapausing blastocyst in a wild population of tammar wallabies. J Endocrinol 95:293–300

    Article  CAS  PubMed  Google Scholar 

  • Flint A, Krzywinski A, Sempéré A, Mauget R, Lacroix A (1994) Luteal oxytocin and monoestry in the roe deer Capreolus capreolus. J Reprod Fertil 101:651–656

    Article  CAS  PubMed  Google Scholar 

  • Fozard JR, Part ML, Prakash NJ, Grove J, Schechter PJ, Sjoerdsma A et al (1980) L-Ornithine decarboxylase: an essential role in early mammalian embryogenesis. Science 208:505–508

    Article  CAS  PubMed  Google Scholar 

  • Frost HC, Krohn WB, Bezembluk EA, Lott R, Wallace CR (2005) Prenatal development in fishers (Martes pennanti). Theriogenology 63:1440–1453

    Article  PubMed  Google Scholar 

  • Fu Z, Wang B, Wang S, Wu W, Wang Q, Chen Y et al (2014) Integral proteomic analysis of blastocysts reveals key molecular machinery governing embryonic diapause and reactivation for implantation in mice. Biol Reprod 90:52

    Article  PubMed  Google Scholar 

  • Galliani G, Colombo G, Luzzani F (1983) Contragestational effects of DL-alpha-difluoro-methylornithine, an irreversible inhibitor of ornithine decarboxylase, in the hamster. Contraception 28:159–170

    Article  CAS  PubMed  Google Scholar 

  • Gurtan AM, Ravi A, Rahl PB, Bosson AD, JnBaptiste CK, Bhutkar A et al (2013) Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts. Genes Dev 27:941–954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamatani T, Daikoku T, Wang H, Matsumoto H, Carter MG, Ko MS et al (2004) Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. Proc Natl Acad Sci U S A 101:10326–10331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heap RB (1979) Introduction. In: Whelan J (ed) Ciba Foundation Symposium 64 – maternal recognition of pregnancy. Wiley, Chichester, pp 1–2

    Google Scholar 

  • Hearn CM (2005) Onset of embryonic diapause in the tammar wallaby (Macropus eugenii): cellular, molecular and hormonal control. (PhD Thesis) Department of Zoology, The University of Melbourne, Melbourne, Victoria, Australia

    Google Scholar 

  • Hirzel DJ, Wang J, Das SK, Dey SK, Mead RA (1999) Changes in uterine expression of leukemia inhibitory factor during pregnancy in the Western spotted skunk. Biol Reprod 60:484–492

    Article  CAS  PubMed  Google Scholar 

  • Hondo E, Stewart CL (2005) Profiling gene expression in growth-arrested mouse embryos in diapause. Genome Biol 6:202

    Article  PubMed Central  PubMed  Google Scholar 

  • Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42:39–51

    Article  CAS  PubMed  Google Scholar 

  • Jin XL, O’Neill C (2011) Regulation of the expression of proto-oncogenes by autocrine embryotropins in the early mouse embryo. Biol Reprod 84:1216–1224

    Article  CAS  PubMed  Google Scholar 

  • Kliem A, Tetens F, Klonisch T, Grealy M, Fischer B (1998) Epidermal growth factor receptor and ligands in elongating bovine blastocysts. Mol Reprod Dev 51:402–412

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Hinds LA, Muller WJ, O’Neill C, Tyndale-Biscoe CH (1993) Production and secretion of progesterone in vitro and presence of platelet activating factor (PAF) in early pregnancy of the marsupial, Macropus eugenii. Reprod Fertil Dev 5:15–25

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre PL, Palin MF, Chen G, Turecki G, Murphy BD (2011a) Polyamines are implicated in the emergence of the embryo from obligate diapause. Endocrinology 152:1627–1639

    Article  PubMed  Google Scholar 

  • Lefèvre PL, Palin MF, Murphy BD (2011b) Polyamines on the reproductive landscape. Endocr Rev 32:694–712

    Article  PubMed  Google Scholar 

  • Lefèvre PLC, Palin MF, Beaudry D, Dobias-Goff M, Desmarais JA, Llerena VE et al (2011c) Uterine signaling at the emergence of the embryo from obligate diapause. Am J Physiol Endocrinol Metab 300:E800–E808

    Article  PubMed  Google Scholar 

  • Li L, Yasuda K, Matsubara T, Okada H, Nakajima T, Sanezumi M et al (1999) Estrogen effects on platelet-activating factor and platelet-activating factor acetylhydrolase activity in rat uterus during the late stages of pregnancy. Prostaglandins Other Lipid Mediat 57:219–230

    Article  CAS  PubMed  Google Scholar 

  • Liu WM, Pang RT, Cheong AW, Ng EH, Lao K, Lee KF et al (2012) Involvement of microRNA lethal-7a in the regulation of embryo implantation in mice. PLoS One 7, e37039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopes FL, Desmarais J, Gevry NY, Ledoux S, Murphy BD (2003) Expression of vascular endothelial growth factor isoforms and receptors Flt-1 and KDR during the peri-implantation period in the mink, Mustela vison. Biol Reprod 68:1926–1933

    Article  CAS  PubMed  Google Scholar 

  • Lopes FL, Desmarais JA, Murphy BD (2004) Embryonic diapause and its regulation. Reproduction 128:669–678

    Article  CAS  PubMed  Google Scholar 

  • Lopes FL, Desmarais J, Ledoux S, Gevry NY, Lefevre P, Murphy BD (2006) Transcriptional regulation of uterine vascular endothelial growth factor during early gestation in a carnivore model, Mustela vison. J Biol Chem 281:24602–24611

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Garcia C, Lopez-Contreras AJ, Cremades A, Castells MT, Marin F, Schreiber F et al (2008) Molecular and morphological changes in placenta and embryo development associated with the inhibition of polyamine synthesis during midpregnancy in mice. Endocrinology 149:5012–5023

    Article  CAS  PubMed  Google Scholar 

  • Luo ZX, Yuan CX, Meng QJ, Ji Q (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476:442–445

    Article  CAS  PubMed  Google Scholar 

  • Ma WG, Song H, Das SK, Paria BC, Dey SK (2003) Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci U S A 100:2963–2968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mandal S, Mandal A, Johansson HE, Orjalo AV, Park MH (2013) Depletion of cellular polyamines, spermidine and spermine, causes a total arrest in translation and growth in mammalian cells. Proc Natl Acad Sci U S A 110:2169–2174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mead RA (1981) Delayed implantation in mustelids with special emphasis on the spotted skunk. J Reprod Fertil Suppl 29:11–24

    CAS  PubMed  Google Scholar 

  • Mead RA (1993) Embryonic diapause in vertebrates. J Exp Zool 266:629–641

    Article  CAS  PubMed  Google Scholar 

  • Murphy BD (2012a) Embryonic diapause: advances in understanding the enigma of seasonal delayed implantation. Reprod Domest Anim 47(Supplement 6):121–124

    Article  PubMed  Google Scholar 

  • Murphy BD (2012b) Resolving the enigma of embryonic diapause, a forty-year scientific journey. In: Larsen PF, Møller SH, Clausen T, Hammer AS, Lássen TM, Nielsen VH et al (eds) Proceedings of the Xth international scientific congress in Fur Animal Production (IFASA), Copenhagen, 21–24 Aug 2012. Wageningen Academic Publishers, The Netherlands, pp 223–228

    Google Scholar 

  • Nallasamy S, Li Q, Bagchi MK, Bagchi IC (2012) Msx homeobox genes critically regulate embryo implantation by controlling paracrine signaling between uterine stroma and epithelium. PLoS Genet 8, e1002500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nichols J, Davidson D, Taga T, Yoshida K, Chambers I, Smith A (1996) Complementary tissue-specific expression of LIF and LIF-receptor mRNAs in early mouse embryogenesis. Mech Dev 57:123–131

    Article  CAS  PubMed  Google Scholar 

  • Nichols J, Chambers I, Taga T, Smith A (2001) Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development 128:2333–2339

    CAS  PubMed  Google Scholar 

  • O’Neill C (1985) Partial characterization of the embryo-derived platelet-activating factor in mice. J Reprod Fertil 75:375–380

    Article  PubMed  Google Scholar 

  • O’Neill C (1991) A physiological role for PAF in the stimulation of mammalian embryonic development. Trends Pharmacol Sci 12:82–84

    Article  PubMed  Google Scholar 

  • O’Neill C (2005) The role of paf in embryo physiology. Hum Reprod Update 11:215–228

    Article  PubMed  Google Scholar 

  • Passavant C, Zhao X, Das SK, Dey SK, Mead RA (2000) Changes in uterine expression of leukemia inhibitory factor receptor gene during pregnancy and its up-regulation by prolactin in the western spotted skunk. Biol Reprod 63:301–307

    Article  CAS  PubMed  Google Scholar 

  • Ptak GE, Tacconi E, Czernik M, Toschi P, Modlinski JA, Loi P (2012) Embryonic diapause is conserved across mammals. PLoS One 7, e33027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ptak GE, Modlinski JA, Loi P (2013) Embryonic diapause in humans: time to consider? Reprod Biol Endocrinol 11:92

    Article  PubMed Central  PubMed  Google Scholar 

  • Rasweiler JJI, Badwaik NK (1997) Delayed development in the short-tailed fruit bat, Carollia perspicillata. J Reprod Fertil 109:7–20

    Article  CAS  PubMed  Google Scholar 

  • Reddy PR, Rukmini V (1981) α-difluoromethylornithine as a postcoitally effective antifertility agent in female rats. Contraception 24:215–221

    Article  CAS  PubMed  Google Scholar 

  • Renfree MB (1972) Influence of the embryo on the marsupial uterus. Nature 240:475–477

    Article  CAS  PubMed  Google Scholar 

  • Renfree MB (1973) Proteins in the uterine secretions of the marsupial Macropus eugenii. Dev Biol 32:41–49

    Article  CAS  PubMed  Google Scholar 

  • Renfree MB (2000) Maternal recognition of pregnancy in marsupials. Rev Reprod 5:6–11

    Article  CAS  PubMed  Google Scholar 

  • Renfree MB, Calaby JH (1981) Background to delayed implantation and embryonic diapause. J Reprod Fertil Suppl 29:1–9

    CAS  PubMed  Google Scholar 

  • Renfree MB, Shaw G (2000) Diapause. Ann Rev Physiol 62:353–375

    Article  CAS  Google Scholar 

  • Renfree MB, Shaw G (2014) Embryo-endometrial interactions during early development after embryonic diapause in the marsupial tammar wallaby. Int J Dev Biol 58:175–181

    Article  PubMed  Google Scholar 

  • Renfree MB, Tyndale-Biscoe CH (1973) Intrauterine development after diapause in the marsupial Macropus eugenii. Dev Biol 32:28–40

    Article  CAS  PubMed  Google Scholar 

  • Rosario GX, Hondo E, Jeong JW, Mutalif R, Ye X, Yee LX et al (2014) The LIF-mediated molecular signature regulating murine embryo implantation. Biol Reprod 91:66

    Article  PubMed  Google Scholar 

  • Sharkey A (1998) Cytokines and implantation. Rev Reprod 3:52–61

    Article  CAS  PubMed  Google Scholar 

  • Shaw G, Renfree MB (1986) Uterine and embryonic metabolism after diapause in the tammar wallaby, Macropus eugenii. J Reprod Fertil 76:339–347

    Article  CAS  PubMed  Google Scholar 

  • Song JH, Houde A, Murphy BD (1998) Cloning of leukemia inhibitory factor (LIF) and its expression in the uterus during embryonic diapause and implantation in the mink (Mustela vison). Mol Reprod Dev 51:13–21

    Article  CAS  PubMed  Google Scholar 

  • Spindler RE, Renfree MB, Gardner DK (1995) Metabolic assessment of wallaby blastocysts during embryonic diapause and subsequent reactivation. Reprod Fertil Dev 7:1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Spindler RE, Renfree MB, Gardner DK (1996) Carbohydrate uptake by quiescent and reactivated mouse blastocysts. J Exp Zool 276:132–137

    Article  CAS  PubMed  Google Scholar 

  • Spindler RE, Renfree MB, Shaw G, Gardner DK (1998) Reactivating tammar wallaby blastocysts oxidize glucose. Biol Reprod 58:1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Spindler RE, Renfree MB, Gardner DK (1999) Mouse embryos used as a bioassay to determine control of marsupial embryonic diapause. J Exp Zool 283:590–599

    Article  CAS  PubMed  Google Scholar 

  • Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F et al (1992) Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359:76–79

    Article  CAS  PubMed  Google Scholar 

  • Surani MAH (1975) Zona pellucida denudation, blastocyst proliferation and attachment in the rat. J Embryol Exp Morphol 33:343–353

    CAS  PubMed  Google Scholar 

  • Tarin JJ, Cano A (1999) Do human concepti have the potential to enter into diapause? Hum Reprod 14:2434–2436

    Article  CAS  PubMed  Google Scholar 

  • Thornber EJ, Renfree MB, Wallace GI (1981) Biochemical studies of intrauterine components of the tammar wallaby Macropus eugenii during pregnancy. J Embryol Exp Morphol 62:325–338

    CAS  PubMed  Google Scholar 

  • Tyndale-Biscoe CH (1979) Hormonal control of embryonic diapause and reactivation in the tammar wallaby. In: Carson DD (ed) Maternal recognition of pregnancy Ciba Foundation Symposium 64. Excerpta Medica, Amsterdam, pp 173–190

    Google Scholar 

  • Tyndale-Biscoe CH, Hearn JP (1981) Pituitary and ovarian factors associated with seasonal quiescence of the tammar wallaby, Macropus eugenii. J Reprod Fertil 63:225–230

    Article  CAS  PubMed  Google Scholar 

  • Tyndale-Biscoe H, Renfree MB (1987) Reproductive physiology of marsupials. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Van Winkle LJ, Campione AL (1983) Effect of inhibitors of polyamine synthesis on activation of diapausing mouse blastocysts in vitro. J Reprod Fertil 68:437–444

    Article  PubMed  Google Scholar 

  • Wang H, Matsumoto H, Guo Y, Paria BC, Roberts RL, Dey SK (2003) Differential G protein-coupled cannabinoid receptor signaling by anandamide directs blastocyst activation for implantation. Proc Natl Acad Sci U S A 100:14914–14919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weitlauf HM (1994) Biology of implantation. In: Knobil E, O’Neill JD (eds) The physiology of reproduction, 2nd edn. Raven, New York, pp 391–440

    Google Scholar 

  • Wimsatt WA (1975) Some comparative aspects of implantation. Biol Reprod 12:1–40

    Article  CAS  PubMed  Google Scholar 

  • Zhao YC, Chi YJ, Yu YS, Liu JL, Su RW, Ma XH et al (2008) Polyamines are essential in embryo implantation: expression and function of polyamine-related genes in mouse uterus during peri-implantation period. Endocrinology 149:2325–2332

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn B. Renfree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Renfree, M.B. (2015). Embryonic Diapause and Maternal Recognition of Pregnancy in Diapausing Mammals. In: Geisert, R., Bazer, F. (eds) Regulation of Implantation and Establishment of Pregnancy in Mammals. Advances in Anatomy, Embryology and Cell Biology, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-319-15856-3_12

Download citation

Publish with us

Policies and ethics