Skip to main content

Remote Sensing Time Series Revealing Land Surface Dynamics: Status Quo and the Pathway Ahead

  • Chapter
Remote Sensing Time Series

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 22))

Abstract

The face of our planet is changing at an unprecedented rate. Forest ecosystems diminish at alarming speed, urban and agricultural areas expand into the surrounding natural space, aquaculture is spreading, sea level rise leads to changes in coastal ecosystems, and even without obvious land cover change, land use intensity may change and complex ecosystems may undergo transient changes in composition. Satellite based earth observation is a powerful means to monitor these changes, and especially time series analysis holds the potential to reveal long term land surface dynamics. Whereas in past decades time series analysis was an elaborate undertaking mostly performed by a limited number of experts using coarse resolution data, attention shifts nowadays to open source tools and novel techniques for analyzing time series and the utilization of the same for numerous environmental applications. The reasons are the pressing call for climate-relevant, long term data analyses and value added products revealing past land surface dynamics and trends, the growing demand for global data sets, and the opening up of multidecadal remote sensing data archives, all at a time of considerably-improved hardware power, computer literacy, and a general trend towards cloud solutions and available open source algorithms and programming languages. This chapter presents a comprehensive overview of time series analysis. We introduce currently orbiting optical, radar, and thermal infrared sensors and elucidate which of them are suitable for long term monitoring tasks based on remote sensing time series analysis. We briefly summarize the theoretical concept of time series components and important seasonal statistical features and list the types of variables usually analyzed as time series. Furthermore, we address data related, sensor related, location related, and processing related challenges of time series analysis. Lastly, we assess current developments and upcoming opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahl DE, Gower ST, Burrows SN, Shabanov NV, Myneni RB, Knyazikhin Y, Douglas EA (2006) Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS. Remote Sens Environ 104:88–95

    Article  Google Scholar 

  • Amelung F, Galloway DL, Bell JW, Zebker HA, Laczniak RJ (1999) Sensing the ups and downs of Las Vegas – InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 27:483–486

    Article  Google Scholar 

  • Arnett JTTR, Coops NC, Daniels LD, Falls RW (2015) Detecting forest damage after a low-severity fire using remote sensing at multiple scales. Int J Appl Earth Obs Geoinf 35(Part B):239–246

    Article  Google Scholar 

  • Askne J, Santoro M (2005) Multitemporal repeat pass SAR interferometry of boreal forests. IEEE Trans Geosci Remote Sens 43(6):1219–1228

    Article  Google Scholar 

  • Ban Y (2003) Multitemporal ERS-1 SAR and Landsat TM data for agricultural crop classification: comparison and synergy. Can J Remote Sens 29(4):518–526

    Article  Google Scholar 

  • Bartalis Z, Scipal K, Wagner W (2006) Azimuthal anisotropy of scatterometer measurements over land. IEEE Trans Geosci Remote Sens 44(8):2083–2092

    Article  Google Scholar 

  • Bartsch A, Trofaier AM, Hayman G, Sabel D, Schlaffer S, Clark DB, Blyth E (2012) Detection of open water dynamics with ENVISAT ASAR in support of land surface modelling at high latitudes. Biogeosciences 9:703–714. doi:10.5194/bg-9-703-2012

    Article  Google Scholar 

  • Bonano M, Manunta M, Marsella M, Lanari R (2012) Long-term ERS/ENVISAT deformation time-series generation at full spatial resolution via the extended SBAS technique. Int J Remote Sens 33:4756–4783

    Article  Google Scholar 

  • Bontemps S, Langner A, Defourny P (2012) Monitoring forest changes in Borneo on a yearly basis by an object-based change detection algorithm using SPOTVEGETATION time series. Int J Remote Sens 33:4673–4699

    Article  Google Scholar 

  • Brest CL, Rossow WB, Roiter MD (1997) Update of radiance calibrations for ISCCP. J Atmos Ocean Technol 14:1091–1109

    Article  Google Scholar 

  • Broich M, Hansen MC, Potapov P, Adusei B, Lindquist E, Stehman SV (2011) Time-series analysis of multi-resolution optical imagery for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia. Int J Appl Earth Obs Geoinf 13:277–291

    Article  Google Scholar 

  • Bruzzone L, Prieto DF (2002) A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images. Pattern Recogn Lett 23(9):1063–1071

    Article  Google Scholar 

  • Cartus O, Santoro M, Schmullius C, Li Z (2011) Large area forest stem volume mapping in the boreal zone using synergy of ERS-1/2 tandem coherence and MODIS vegetation continuous fields. Remote Sens Environ 115:931–943

    Article  Google Scholar 

  • DeBeurs KM, Henebry GM (2005a) A statistical framework for the analysis of long image time series. Int J Remote Sens 26(8):1551–1573. doi:10.1080/01431160512331326657

    Article  Google Scholar 

  • DeBeurs KM, Henebry GM (2005b) Land surface phenology and temperature variation in the international geosphere-biosphere program high-latitude transects. Glob Chang Biol 11:779–790

    Article  Google Scholar 

  • Dietz A, Wohner C, Kuenzer C (2012) European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. Remote Sens 4:2432–2454. doi:10.3390/rs4082432

    Article  Google Scholar 

  • Dietz A, Kuenzer C, Conrad C (2013) Snow cover variability in Central Asia between 2000 and 1 2011 derived from improved MODIS daily snow cover products. Int J Remote Sens 34(11):3879–3902

    Article  Google Scholar 

  • Dietz A, Conrad C, Kuenzer C, Gesell G, Dech S (2014) Identifying changing snow cover characteristics in Central Asian between 1986 and 2014 from remote sensing data. Remote Sens 6:12752–12775

    Article  Google Scholar 

  • Dorigo W, deJeu R, Chung D, Parinussa R, Liu Y, Wagner W, Fernández-Prieto D (2012) Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys Res Lett 39(L18405):1–7

    Google Scholar 

  • Dostálová A, Doubková M, Sabel D, Bauer-Marschallinger B, Wagner W (2014) Seven years of Advanced Synthetic Aperture Radar (ASAR) Global Monitoring (GM) of surface soil moisture over Africa. Remote Sens 6(8):7683–7707

    Article  Google Scholar 

  • Doubková M, Dostálová A (née Hegyiová), van Dijk AIJM, Blöschl G, Wagner W, Fernández-Prieto D (2014) How do spatial scale, noise, and reference data affect empirical estimates of error in ASAR-derived 1 km resolution soil moisture? IEEE J Sel Top Appl Earth Obs Remote Sens 7(9):3880–3891. doi:10.1109/JSTARS.2014.2324657

  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, Meygret A, Spoto F, Sy O, Marchese F, Bargellini P (2012) Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ 120:25–36

    Article  Google Scholar 

  • Duh JD, Shandas V, Chang H, George LA (2006) Rates of urbanisation and the resiliency of air and water quality. Sci Total Environ 400(1–3):238–256

    Google Scholar 

  • Eisfelder C, Klein I, Niklaus M, Kuenzer C (2014) Net primary productivity in Kazakhstan, its spatio-temporal patterns and relation to meteorological variables. J Arid Environ 103:17–30

    Article  Google Scholar 

  • Fensholt R, Rasmussen K, Nielsen TT, Mbow C (2009) Evaluation of earth observation based long term vegetation trends – intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens Environ 113(9):1886–1898

    Article  Google Scholar 

  • Fielding EJ, Blom RG, Goldstein RM (1998) Rapid subsidence over oil fields measured by SAR interferometry. Geophys Res Lett 27:3215–3218

    Article  Google Scholar 

  • Frey C, Kuenzer C (2014) Land surface temperature dynamics in the Upper Mekong Basin derived from MODIS time series. Int J Remote Sens 35(8):2780–2798

    Article  Google Scholar 

  • Frey C, Kuenzer C, Dech S (2012) Quantitative comparison of the operational NOAA AVHRR LST product of DLR and the MODIS LST product V005. Int J Remote Sens 33(22):7165–7183

    Article  Google Scholar 

  • Friedl MA, McIver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Remote Sens Environ 83:287–302

    Article  Google Scholar 

  • Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114(1):168–182

    Article  Google Scholar 

  • Gao F, Masek J, Schwaller M, Hall F (2006) On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans Geosci Remote Sens 44:2207–2218

    Article  Google Scholar 

  • Greifeneder F, Wagner W, Sabel D, Naeimi V (2014) Suitability of SAR imagery for automatic flood mapping in the Lower Mekong Basin. Int J Remote Sens 35(8):2857–2874

    Article  Google Scholar 

  • Grumbine E, Pandit M (2013) Threats from India’s Himalaya dams. Science 339(6115):36–37. doi:10.1126/science.1227211

    Article  Google Scholar 

  • Gutman G, Masek JG (2012) Long-term time series of the Earth’s land-surface observations from space. Int J Remote Sens 33:4700–4719

    Article  Google Scholar 

  • Haas J, Ban Y (2014) Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze River Delta and the Pearl River Delta. Int J Appl Earth Obs Geoinf 30:42–55

    Article  Google Scholar 

  • Hermosilla T, Wulder MA, White JC, Coops NC, Hobart GW (2015) An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sens Environ 158:220–234

    Article  Google Scholar 

  • Higgins S, Overeem I, Tanaka A, Syvitski J (2013) Land subsidence at aquaculture facilities in the Yellow River Delta, China. Geophys Res Lett 40(15):3898–3902. doi:10.1002/grl.50758

    Article  Google Scholar 

  • Hilker T, Wulder M, Coops N, Seitz N, White J, Gao F, Masek J, Stenhouse G (2009) Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens Environ 113:1988–1999

    Article  Google Scholar 

  • Jönsson P, Eklundh L (2004) TIMESAT – a program for analyzing time-series of satellite sensor data. Comput Geosci 30(8):833–845

    Article  Google Scholar 

  • Kennedy RE, Yang ZQ, Cohen WB (2010) Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – temporal segmentation algorithms. Remote Sens Environ 114(12):2897–2910

    Article  Google Scholar 

  • Klein I, Dietz A, Gessner U, Dech S, Kuenzer C (2015) Preliminary results of the global WaterPack: a novel product to assess inland water body dynamics on a daily basis. Int J Remote Sens 6(1):78–87

    Google Scholar 

  • Kuemmerle T, Chaskovskyy O, Knorn J, Radeloff VC, Kruhlov I, Keeton WS, Hostert P (2009) Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sens Environ 113(6):1194–1207

    Article  Google Scholar 

  • Kuenzer C, Bachmann M, Mueller A, Lieckfeld L, Wagner W (2008) Partial unmixing as a tool for single surface class detection and time series analysis. Int J Remote Sens 29(11):1–23. doi:10.1080/01431160701469107

    Article  Google Scholar 

  • Kuenzer C, Zhao D, Scipal K, Sabel D, Naeimi V, Bartalis Z, Hasenauer S, Mehl H, Dech S, Wagner W (2009) El Niño influences represented in ERS scatterometer derived soil moisture data. Appl Geogr 29(4):463–477

    Article  Google Scholar 

  • Kuenzer C, Guo H, Leinenkugel L, Huth J, Li X, Dech S (2013) Flood mapping and flood dynamics of the Mekong Delta: an ENVISAT-ASAR-WSM based time series analyses. Remote Sens 5:687–715. doi:10.3390/rs5020687

    Article  Google Scholar 

  • Kuenzer C, Ottinger M, Wegmann M, Guo H, Wang C, Zhang J, Dech S, Wikelski M (2014) Earth observation satellite sensors for biodiversity monitoring: potentials and bottlenecks. Int J Remote Sens 35(18):6599–6647. doi:10.1080/01431161.2014.964349

    Article  Google Scholar 

  • Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annu Rev Environ Resour 28:205–241

    Article  Google Scholar 

  • Lasaponara R, Lanorte A (2012) Satellite time-series analysis. Int J Remote Sens 33(15):4649–4652. doi:10.1080/01431161.2011.638342

    Article  Google Scholar 

  • Le Toan T, Ribbes F, Floury N, Wang L, Kong JA, Kurosu T, Fujita M (1997) Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Trans Geosci Remote Sens 35(1):41–56

    Article  Google Scholar 

  • Leinenkugel P, Kuenzer C, Oppelt N, Dech S (2013) Characterisation of land surface phenology and land cover based on moderate resolution satellite data in cloud prone areas – a novel product for the Mekong Basin. Remote Sens Environ 136:180–198. doi:10.1016/j.rse.2013.05.004

    Article  Google Scholar 

  • Leinenkugel P, Wolters ML, Oppelt N, Kuenzer C (2014) Tree cover and forest cover dynamics in the Mekong Basin from 2001 to 2011. Remote Sens Environ. doi:10.1016/j.rse.2014.10.021

    Google Scholar 

  • Lieth H (ed) (1974) Phenology and seasonal modeling. Springer, New York

    Google Scholar 

  • Liu JG, Mason PJ, Yu E, Wu MC, Tang C, Huang R, Liu H (2012) GIS modelling of earthquake damage zones using satellite remote sensing and DEM data. Geomorphology 139–140:518–535

    Article  Google Scholar 

  • Lu L, Kuenzer C, Guo H, Li Q, Long T, Li X (2014) A novel land cover classification map based on MODIS time-series in Xinjiang, China. Remote Sens 6:3387–3408. doi:10.3390/rs6043387

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska OG, Briede A et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Müller H, Rufin P, Griffiths P, Siqueira AJB, Hostert P (2015) Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens Environ 156:490–499

    Article  Google Scholar 

  • Naeimi V, Leinenkugel P, Sabel D, Wagner W, Apel H, Kuenzer C (2013) Evaluation of soil moisture retrieval from the ERS and metop scatterometers in the lower Mekong Basin. Remote Sens 5(4):1603–1623

    Article  Google Scholar 

  • Nightingale J, Morisette J, Wolfe R, Tan B, Gao F, Ederer G, Collatz G, Turner D (2009) Temporally smoothed and gap‐filled MODIS land products for carbon modelling: application of the f PAR product. Int J Remote Sens 30:1083–1090

    Article  Google Scholar 

  • Park SE, Bartsch A, Sabel D, Wagner W, Naeimi V, Yamaguchi Y (2011) Monitoring freeze/thaw cycles using ENVISAT ASAR Global Mode. Remote Sens Environ 115(12):3457–3467

    Article  Google Scholar 

  • Rebelo LM, Finlayson CM, Nagabhatla N (2009) Remote sensing and GIS for wetland inventory, mapping and change analysis. J Environ Manag 90(7):2144–2153

    Article  Google Scholar 

  • Ren W, Zhong Y, Meligrana J, Anderson B, Watt WE, Chen J, Leung HL (2003) Urbanization, land use, and water quality in Shanghai: 1947–1996. Environ Int 29(5):649–659

    Article  Google Scholar 

  • Rogan J, Franklin J, Roberts DA (2002) A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sens Environ 80(1):143–156

    Article  Google Scholar 

  • Santoro M, Askne J, Smith G, Fransson JES (2002) Stem volume retrieval in boreal forests from ERS-1/2 interferometry. Remote Sens Environ 81:19–35

    Article  Google Scholar 

  • Santoro M, Beaudoin A, Beer C, Cartus O, Schmullius C, Shvidenko A, McCallum I, Wegmuller U, Wiesmann A (2011) Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sens Environ 115(2):490–507

    Article  Google Scholar 

  • Santoro M, Beaudoin A, Beer C, Cartus O, Fransson J, Hall R, Pathe C, Schmullius C, Shvidenko A, Thurner M, Wegmueller U (2015) Forest growing stock volume of the northern hemisphere: spatially explicit estimates for 2010 derived from Envisat ASAR data. Remote Sens Environ (final review phase)

    Google Scholar 

  • Schönwiese CD (2008) Klimatologie, 3rd edn. Ulmer (UTB), Stuttgart, 472 pp

    Google Scholar 

  • Schwartz MD (2013) Phenology: an integrative environmental science. Springer, New York

    Book  Google Scholar 

  • Schwartz MD, Reed BC, White MA (2002) Assessing satellite-derived start-of-season measures in the conterminous USA. Int J Climatol 22:1793–1805

    Article  Google Scholar 

  • Song S, Kuenzer C, Zhang Z, Jia Y, Sun Y, Zhang J (2015) Analysis of coal fire dynamics in the Wuda syncline impacted by fire-fighting activities based on in-situ observations and Landsat-8 remote sensing data. Int J Coal Geol (accepted for publication)

    Google Scholar 

  • Sulla-Menashe D, Kennedy RE, Yang Z, Braaten J, Krankina ON, Friedl MA (2014) Detecting forest disturbance in the Pacific Northwest from MODIS time series using temporal segmentation. Remote Sens Environ 151:114–123

    Article  Google Scholar 

  • Taubenböck H, Esch T, Felbier A, Wiesner M, Roth A, Dech S (2012) Monitoring urbanization in mega cities from space. Remote Sens Environ 117:162–176

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Newnham G, Culvenor D (2010) Detecting trend and seasonal changes in satellite image time series. Remote Sens Environ 114:106–115

    Article  Google Scholar 

  • Wagner W, Lemoine G, Rott H (1999) A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens Environ 70:191–207

    Article  Google Scholar 

  • Wagner W, Luckman A, Vietmeier J, Tansey K, Balzter H, Schmullius C, Davidson M, Gaveau D, Gluck M, Le Toan T, Quegan S, Shvidenko A, Wiesmann A, Jiong Yu JJ (2003) Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data. Remote Sens Environ 85(2):125–144

    Article  Google Scholar 

  • Wagner W, Hahn S, Kidd R, Melzer T, Bartalis Z, Hasenauer S, Figa-Saldanấ J, de Rosnay P, Jann A, Schneider S, Komma J, Kubu G, Brugger K, Aubrecht C, Züger C, Gangkofer U, Kienberger S, Brocca L, Wang Y, Blöschl G, Eitzinger J, Steinnocher K, Zeil P, Rubel F (2013) The ASCAT soil moisture product: a review of its specifications, validation results, and emerging applications. Meteorol Z 22(1):5–33

    Article  Google Scholar 

  • White MA, deBeurs KM, Didan K, Inouye DW, Richardson AD, Jensen OP, O’Keefe J, Zhang G, Nemani RR, van Leeuwen WJD et al (2009) Intercomparison, interpretation, and assessment of spring phenology in north America estimated from remote sensing for 1982–2006. Glob Chang Biol 15:2335–2359

    Article  Google Scholar 

  • Woodcock CE, Allen R, Anderson M, Belward A, Bindschadler R, Cohen W, Gao F, Goward SN, Helder D, Helmer E, Nemani R, Oreopoulos L, Schott J, Thenkabail PS, Vermote EF, Vogelmann J, Wulder MA, Wynne R (2008) Free access to Landsat imagery. Science 320:1011

    Article  Google Scholar 

  • Wooding M, Attema E, Aschbacher J, Borgeaud M, Cordey RA, De Groot H, Harms J, Lichtenegger J, Nieuwenhuis G, Schmullius C, Zmuda A (1995) Satellite radar in agriculture. Experience with ERS-1. ESA Scientific Publications, Noordwijk, SP-1185. ISBN 92-9092-339-3

    Google Scholar 

  • Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE (2012) Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122:2–10

    Article  Google Scholar 

  • Yuan F, Sawaya KE, Loeffelholz BC, Bauer ME (2005) Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens Environ 98(2–3):317–328

    Article  Google Scholar 

  • Zhao D, Kuenzer C, Fu C, Wagner W (2008) Evaluation of the ERS scatterometer derived soil water index to monitor water availability and precipitation distribution at three different scales in China. J Hydrometeorol 9:549–562

    Article  Google Scholar 

  • Zhu XL, Chen J, Gao F, Chen XH, Masek JG (2010) An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens Environ 114(11):2610–2623

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank P. Leinenkugel and U. Gessner for discussion of the manuscript. Furthermore, we are grateful to two anonymous reviewers for their valuable comments. Further thanks go to P. Koch for support with the editing of references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Kuenzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuenzer, C., Dech, S., Wagner, W. (2015). Remote Sensing Time Series Revealing Land Surface Dynamics: Status Quo and the Pathway Ahead. In: Kuenzer, C., Dech, S., Wagner, W. (eds) Remote Sensing Time Series. Remote Sensing and Digital Image Processing, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-15967-6_1

Download citation

Publish with us

Policies and ethics