Skip to main content

Soil Quality and Plant-Microbe Interactions in the Rhizosphere

  • Chapter
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 17))

Abstract

The rhizosphere is a microenvironment contrastingly different from non-rhizosphere soil. The high microbial activity in the rhizosphere leads to better cycling and availability of nutrients and improves chemical soil quality indicators. The biological soil quality indicators are improved in rhizosphere due to enhanced microbial activities either in terms of microbial biomass carbon, dehydrogenase activity, activities of various hydrolytic enzymes e.g., phosphatases, sulfatases, proteases, amidases and glucosidase responsible for breakdown of organically bound nutrients in soil. Over the last two decades lot of interests developed on soil quality research due to degradation in soil quality by anthropogenic activity. Besides being a rich source of carbon and energy for the heterotrophic organisms, plant roots exudates secrete a variety of carbonaceous materials that can act as a binding agent to increase stability of soil aggregates. The adoption of proper soil, crop, nutrient and organic manure management strategies has the direct impact on the soil quality. However, it may also be affected indirectly by the plant microbe interactions. This article focuses on induced changes in the rhizosphere ecology by plant microbe interactions and also to integrate these changes to soil quality indicator of unified soil in the sustainable agriculture soil management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar MS, Siddiqui ZA (2008) Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot 27:401–417. doi:10.1016/j.cropro.2007.07.009

    Google Scholar 

  • Andrews SS, Karlen DL, Cambardella CA (2004) The soil management assessment framework: a quantitative soil quality evaluation method. Soil Sci Soc Am J 68:1945–1962

    CAS  Google Scholar 

  • Arshad MA, Coen GM (1992) Characterization of soil quality. Am J Altern Agric 7:25–31. doi:10.1017/S0889189300004410

    Google Scholar 

  • Arshad MC, Lowery B, Grossman B (1996) Physical tests for monitoring soil quality. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Inc., Madison, pp 123–141

    Google Scholar 

  • Asiegbu FO, Nahalkova J, Li G (2005) Pathogen-inducible cDNAs from the interaction of the root rot fungus Heterobasidion annosum with Scots pine (Pinus sylvestris L.). Plant Sci 168:365–372. doi:10.1016/j.plantsci.2004.08.010

    CAS  Google Scholar 

  • Banerjee M, Yesmin L (2002) Sulfur-oxidizing plant growth promoting Rhizobacteria for enhanced canola performance. US7491535 B2

    Google Scholar 

  • Barazani O, Friedman J (2001) Allelopathic bacteria and their impact on higher plants. Crit Rev Microbiol 27:41–55. doi:10.1080/20014091096693

    CAS  PubMed  Google Scholar 

  • Beare MH, Bruce RR (1993) A comparison of methods for measuring water stable aggregates: implications for determining environmental effects on soil structure. Geoderma 56:87–104. doi:10.1016/0016-7061(93)90102-Q

    Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495. doi:10.1093/jxb/erm010

    CAS  PubMed  Google Scholar 

  • Bellaki MA, Badanur VP (1997) Long term effect of integrated nutrient management on properties of vertisol under dryland agriculture. J Indian Soc Soil Sci 45:438–442

    Google Scholar 

  • Bezdicek DF, Papendick RI, Lal R (1996) Importance of soil quality to health and sustainable land management. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Inc., Madison, pp 1–7

    Google Scholar 

  • Birkas M, Stingli A, Szemok A, Kalmar T, Bottlik L (2008) Soil condition and plant interrelations in dry years. Cereal Res Commun 36S:15–18

    Google Scholar 

  • Blake L, Mercik S, Koerschens M, Goulding KWT, Stempen S, Weigel A, Poulton PR, Powlson DS (1999) Potassium content in soil, uptake in plants and the potassium balance in three European long-term field experiments. Plant Soil 216:1–14. doi:10.1023/A:1004730023746

    CAS  Google Scholar 

  • Blanco-Canqui H, Lal R (2007) Soil quality and crop response harvesting corn residues for biofuel production. Geoderma 141:355–362

    CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350. doi:10.1016/S1369-5266(00)00183-7

    CAS  PubMed  Google Scholar 

  • Bouma J (2002) Land quality indicator of sustainable land management across scales. Agric Ecosyst Environ 88:129–136. doi:10.1016/S0167-8809(01)00248-1

    Google Scholar 

  • Brooks PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279. doi:10.1007/BF00336094

    Google Scholar 

  • Bucher AE (1999) Evaluating soil management using indicators of soil quality. M.Sc. thesis, Pennsylvania State University, University Park

    Google Scholar 

  • Cardoso EJBN, Vasconcellos RLF, Bini D, Miyauchi MYH, Santos CA, Alves PRL, Paula AM, Nakatani AS, Pereira JM, Nogueira MA (2013) Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health. Sci Agric 70:274–289. doi:10.1590/S0103-90162013000400009

    Google Scholar 

  • Carter MR, Gregorich EG, Anderson DW, Doran JW, Janzen HH, Pierce FJ (1997) Concepts of soil quality and their significance. In: Gregorich EG, Carter MR (eds) Soil quality for crop production and ecosystem health. Elsevier, Amsterdam, pp 1–19

    Google Scholar 

  • Cassman KG, Pingali PL (1995) Extrapolating trends from long term experiments to farmers fields: the case of irrigated rice systems in Asia. In: Barnett V, Payne R, Steiner R (eds) Agricultural sustainability: economic, environmental and statistical consideration. Wiley Press, London, pp 63–86

    Google Scholar 

  • Cazorla FM, Duckett SB, Bergstrom FT, Noreen S, Odik R (2006) Biocontrol of avocado dematophora root rot by the antagonistic Pseudomonas fluorescens PCL 1606 correlates with the production 2-hexyl-5-propyl resorcinol. Mol Plant Microbe Interact 19:418–428. doi:10.1094/MPMI −19-0418

    CAS  PubMed  Google Scholar 

  • Chaudhury J, Mandal UK, Sharma KL, Ghosh H, Mandal B (2005) Assessing soil quality under long-term rice-based cropping system. Commun Soil Sci Plant Anal 36:1141–1161. doi:10.1081/CSS-200056885

    CAS  Google Scholar 

  • Cheng W, Johnson DW, Fu S (2003) Rhizosphere effects on decomposition: controls of plant species, phenology, and fertilization. Soil Sci Soc Am J 67:1418–1427. doi:10.2136/sssaj2003.1418

    CAS  Google Scholar 

  • Chhonkar PK, Bhadraray S, Patra AK, Purakayastha TJ (2002) Practical manual on soil biology and biochemistry. Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Crosson P (1997) Will erosion threaten agricultural productivity. Environ Sci Policy Sustain Dev 39:4–31. doi:10.1080/00139159709604756

    Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci 99:10494–10499. doi:10.1073/pnas.142680199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dey R, Pal KK, Tilak KVBR (2012) Influence of soil and plant types on diversity of rhizobacteria. Proc Natl Acad Sci India Sect B Biol Sci 82:341–352

    Google Scholar 

  • Dick RP (1992) A review: long-term effects of agricultural systems on soils biochemical and microbial parameters. Agric Ecosyst Environ 40:25–36. doi:10.1016/0167-8809(92) 90081-L

    CAS  Google Scholar 

  • Dick RP (1994) Soil enzymes activities as indicators of soil quality. In: Doran JW, Coleman DC, Bezdicek DE, Stewart BA (eds) Defining soil quality for a sustainable environment. Soil Science Society of America, Inc., Madison, pp 104–124

    Google Scholar 

  • Dick R (1996) Soil enzyme activities as integrative indicators of soil health. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Inc., Madison, pp 121–156

    Google Scholar 

  • Dijkstra FA, Cheng W (2007) Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett 10:1046–1053. doi:10.1111/j.1461-0248.2007. 01095.x

    PubMed  Google Scholar 

  • Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient prospective. Front Microbiol 4:216. doi:10.3389/fmicb.2013.00216

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dobbelare S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149. doi:10.1080/713610853

    Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. Soil Science Society of America, Inc., Madison, pp 3–21

    Google Scholar 

  • Doran JW, Sarrantonio M, Lieberg MA (1996) Soil health and sustainability. In: Sparks DL (ed) Advances in agronomy, vol 56. Academic, San Diego, pp 1–54

    Google Scholar 

  • Doran JW, Stamatiadis S, Haberern J (2002) Soil health as an indicator of sustainable management. Agric Ecosyst Environ 88:107–110. doi:10.1016/S0167-8809(01)00250-X

    Google Scholar 

  • Erturk Y, Ercisli S, Haznedar A, Cakmakci R (2010) Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol Res 43:91–98. doi:10.4067/S0716-97602010000100011

    PubMed  Google Scholar 

  • Fauci MF, Dick RP (1994) Soil microbial dynamics short and long term effects of inorganic and organic nitrogen. Soil Sci Soc Am J 58:801–806. doi:10.2136/sssaj1994.03615995005800030023x

    Google Scholar 

  • Frankenberger WT, Dick WA (1983) Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci Soc Am J 47:945–951

    CAS  Google Scholar 

  • Gill S, Abid M, Ahmad Z, Azam F (2006) Organic amendment accelerates nitrification in soil. Soil Environ 25:35–39

    Google Scholar 

  • Goyal S, Chander K, Mundra MC, Kapoor KK (1999) Influence of inorganic fertilizers and organic amendments on soil organic matter and soil microbial properties under tropical conditions. Biol Fertil Soils 29:196–200. doi:10.1007/s003740050544

    CAS  Google Scholar 

  • Granatstein D, Bezdicek DF (1992) The need for a soil quality index: local and regional perspectives. Am J Altern Agric 7:12–16. doi:10.1017/S0889189300004380

    Google Scholar 

  • Grassini P, Jinsheng Y, Hubbard KG, Cassman KG (2010) Soil water recharge in a semi-arid temperate climate of the Central U.S. Great Plains. Agric Water Manag 97:1063–1069. doi:10.1016/j.agwat.2010.02.019

    Google Scholar 

  • Gregorich EG, Monreal CM, Carter MR, Angers DA, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74:367–385. doi:10.4141/cjss94-051

    CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257. doi:10.1007/s11104-008-9814-y

    CAS  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133. doi:10.1016/S1360-1385(00)01556-9

    CAS  PubMed  Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432. doi:10.1017/S0953756201004725

    Google Scholar 

  • Haynes RJ (1990) Active ion uptake and maintenance of cation-anion balance: a critical examination of their role in regulating rhizosphere pH. Plant Soil 126:247–264. doi:10.1007/BF00012828

    CAS  Google Scholar 

  • Heim S, Mar Lleo MD, Bonato B, Guzman CA, Canepari P (2002) The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J Bacteriol 184:6739–6745. doi:10.1128/JB.184.23.6739–6745.2002

    PubMed Central  CAS  PubMed  Google Scholar 

  • Helkamp AS, Bay JM, Easterling KN, Hess GS, Mcquaid BF, Munster MJ, Nether DA, Olson GL, Sidik K, Stenfanski LA, Tooley MB, Campbell CL (1995) Environmental monitoring and assessment program: agricultural lands pilot field program report- 1993. U.S. Environmental Protection Agency, Washington, DC, p 64

    Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer berucksichtigung der grundungung und brache. Arbeiten der Deutschen Landwirtschafts Gesellschaft 98:59–78

    Google Scholar 

  • Holden PA, Friestone MK (1997) Soil microorganisms in soil cleanup: how can we improve our understanding. J Environ Qual 26:32–40. doi:10.2134/jeq1997.00472425002600010006x

    CAS  Google Scholar 

  • Hseu ZY, Chen ZS, Tsai CC (1999) Selected indicators and conceptual framework for assessment methods of soil quality in arable soils of Taiwan. Soil Environ 2:77–88

    Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Metraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858. doi:10.1094/MPMI.2003.16.10.851

    CAS  PubMed  Google Scholar 

  • Iqbal M, Khan AG, Hassan AU, Raza MW, Amjad M (2012) Soil physical health indices, soil organic carbon, nitrate contents and maize growth as influenced by dairy manure and nitrogen rates. Int J Agric Biol 14:20–28. doi:11–284/MFA/2012/14–1–20–28

    Google Scholar 

  • Islam KR, Weil RR (2000) Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. J Soil Water Conserv Ankeny 55:69–78

    Google Scholar 

  • Jaeger CH, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jassal R, Black A, Novak M, Morgenstern K, Nesic Z, Gaumont-Guay D (2005) Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agric For Meteorol 130:176–192. doi:10.1016/j.agrformet.2005.03.005

    Google Scholar 

  • Jenkinson DS (1991) The Rothamsted long term experiments: are they still in use. Agron J 83:2–10

    Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Marcel Dekker, New York, pp 415–471

    Google Scholar 

  • Jensen ES (1996) Rhizodeposition of N by pea and barley and its effects on soil N dynamics. Soil Biol Biochem 28:65–71. doi:10.1016/0038-0717(95)00116-6

    CAS  Google Scholar 

  • Johnston AE (1994) The Rothamsted classical experiment. In: Leigh RA, Johnston AE (eds) Long-term experiments in agricultural and ecological sciences. CAB International, Wallingford, pp 9–38

    Google Scholar 

  • Kamilova F, Leveau JHJ, Lugtenberg BJJ (2007) Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Environ Microbiol 9:1597–1603. doi:10.1111/j.1462-2920.2007.01348.x

    CAS  PubMed  Google Scholar 

  • Kamilova F, Lamers G, Lugtenberg B (2008) Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol 10:2455–2461. doi:10.1111/j.1462-2920.2008.01638.x

    PubMed  Google Scholar 

  • Kang GS, Beri V, Sidhu BS, Rupela OP (2005) A new index to assess soil quality and sustainability of wheat-based cropping systems. Biol Fertil Soils 41:389–398. doi:10.1007/s00374-005-0857-4

    Google Scholar 

  • Karlen DL, Cambardella CA (1996) Conservation strategies for improving soil quality and organic matter storage. In: Advances in soil science. CRC Press, Boca Raton

    Google Scholar 

  • Karlen DL, Stott DE (1994) A framework for evaluating physical and chemical indicators of soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. Soil Science Society of America, Inc., Madison, pp 53–72

    Google Scholar 

  • Karlen DL, Eash NS, Unger PW (1992) Soil and crop management effects on soil quality indicators. Am J Altern Agric 7:48–55. doi:10.1017/S0889189300004458

    Google Scholar 

  • Karlen DL, Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, Jordahl JL (1994) Crop residue effects on soil quality following 10-years of no-till corn. Soil Tillage Res 31:149–167. doi:10.1016/0167-1987(94)90077-9

    Google Scholar 

  • Karlen DL, Mausbach JW, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: a concept, definition and framework for evaluation. Soil Sci Soc Am J 61:4–10. doi:10.2136/sssaj1997.03615995006100010001x

    CAS  Google Scholar 

  • Kumar A, Yadav DS (2005) Influence of continuous cropping and fertilization on nutrient availability and productivity of an alluvial soil. J Indian Soc Soil Sci 53:194–198

    CAS  Google Scholar 

  • Lal R (1993) Tillage effects on soil degradation, soil resilience, soil quality, and sustainability-introduction. Soil Tillage Res 27:1–8. doi:10.1016/0167-1987(93)90059-X

    Google Scholar 

  • Lal R (1997) Degradation and resilience of soils. Philos Trans R Soc Lond B 352:997–1010. doi:10.1098/rstb.1997.0078

    Google Scholar 

  • Lal R (1999) Soil quality and soil erosion, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc B 363:815–830. doi:10.1098/rstb.2007.2185

    CAS  Google Scholar 

  • Lal R (2013) Cropping systems and soil quality. J Crop Prod 8:33–52. doi:10.1300/J144v08n01_03

    Google Scholar 

  • Lal R, Stewart BA (1990) Soil degradation. Springer, New York

    Google Scholar 

  • Lal R, Stewart BA (1995) Need for long-term experiments in sustainable use of soil resources. In: Lal R, Stewart BA (eds) Soil management: experimental basis for sustainability and environmental quality. CRC Press, Boca Raton, pp 537–545

    Google Scholar 

  • Larson WE, Pierce FJ (1991) Conservation and enhancement of soil quality. Int Board Soil Res Manag 2:175–203

    Google Scholar 

  • Lewandowski A, Zumwinkle M (1999) Assessing the soil system: a review of soil quality literature. In: Fish A (ed) Energy and sustainable agriculture program. Biocentric Inc., St. Paul, Minnesota

    Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial biomass and carbon dioxide flux under wheat as influenced by tillage and crop rotation. Can J Soil Sci 79:273–280. doi:10.4141/S98-052

    Google Scholar 

  • Majumder B, Mandal B, Bandyopadhyay PK, Gangopadhyay A, Mani PK, Kundu AL, Mazumdar D (2008) Organic amendments influence soil organic carbon pools and rice-wheat productivity. Soil Sci Soc Am J 72:775–785. doi:10.2136/sssaj2006.0378

    CAS  Google Scholar 

  • Makoi J, Ndakidemi P (2008) Selected soil enzymes: examples of their potential roles in the ecosystem. Afr J Biotechnol 7:181–191. doi:10.5897/AJB07.590

    CAS  Google Scholar 

  • Manjaiah KM, Singh D (2001) Soil organic matter and biological properties after 26 years of maize–wheat–cowpea cropping as affected by manure and fertilization in a Cambisol in semiarid region of India. Agric Ecosyst Environ 86:155–162. doi:10.1016/S0167-8809(00)00280-2

    Google Scholar 

  • Manjaiah KM, Voroney RP, Sen U (2000) Soil organic carbon stocks, storage profile and microbial biomass under different crop management systems in a tropical agricultural ecosystem. Biol Fertil Soils 31:273–278. doi:10.1007/s003740000248

    Google Scholar 

  • Martens DA, Johanson JB, Frankenberger WT Jr (1992) Production and persistence of soil enzymes with repeated addition of organic residues. Soil Sci 153:53–61

    CAS  Google Scholar 

  • Martinez-Salgado MM, Gutierrez-Romero V, Jannsens M, Ortega-Blu R (2010) Biological soil quality indicators: a review. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, Spain, pp 319–328

    Google Scholar 

  • Masto RE (2004) Soil quality assessment in maize-wheat-cowpea cropping system under long-term fertilizer use. PhD thesis, Indian Agricultural Research Institute, Pusa, New Delhi

    Google Scholar 

  • Masto RE, Chhonkar PK, Singh D, Patra AK (2007) Soil quality response to long-term nutrient and crop management on a semi-arid Inceptisol. Agric Ecosyst Environ 118:130–142. doi:10.1016/j.agee.2006.05.008

    CAS  Google Scholar 

  • Mathur GM (1997) Effect of long-term application of fertilizers and manures on soil properties and yield under cotton-wheat rotation in north-west Rajasthan. J Indian Soc Soil Sci 45:288–292

    Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, Bowles FP, Catricala C, Magill A, Ahrens T, Morrisseau S (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176. doi:10.1126/science.1074153

    CAS  PubMed  Google Scholar 

  • Mengel K, Kirkby EA (1982) Principles of plant nutrition. International Potash Institute, Bern

    Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer Academic Publishers, Dordrecht, pp 3–18

    Google Scholar 

  • Mishra BK, Sharma RB (1997) Effect of fertilizer alone and in combination with manure on physical properties and productivity of entisol under rice-based cropping system. J Indian Soc Soil Sci 45:84–88

    Google Scholar 

  • Mishra BN, Prasad R, Gangaiah B, Shivakumar BG (2006) Organic manures for increased productivity and sustained supply of micronutrients Zn and Cu in a rice-wheat cropping system: innovations for long-term and lasting maintenance and enhancement of agricultural resources, production and environmental quality. J Sustain Agric 28:55–66

    Google Scholar 

  • Nambiar KKM (1994) Soil fertility and crop productivity under long term fertilizer use in India. Indian Council of Agricultural Research, New Delhi, pp 234–267

    Google Scholar 

  • Oguike PC, Chukwu GO, Njoku NC (2006) Physico-chemical properties of a Haplic Acrisol in Southeastern Nigeria amended with rice mill waste and NPK fertilizer. Afr J Biotechnol 5:1058–1061

    Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179. doi:10.2136/sssaj1987.03615995005100050015x

    CAS  Google Scholar 

  • Piedallu C, Jean-Claude G, Bruand A, Seynave I (2011) Mapping soil water holding capacity over large areas to predict potential production of forest stands. Geoderma 160:355–366. doi:10.1016/j.geoderma.2010.10.004

    Google Scholar 

  • Pimentel D, Kounang N (1998) Ecology of soil erosion in ecosystems. Ecosystem 1:416–426. doi:10.1007/s100219900035

    CAS  Google Scholar 

  • Pinton R, Veranini Z, Nannipieri P (2007) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Taylor and Francis, New York

    Google Scholar 

  • Pirlak M, Kose M (2009) Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J Plant Nutr 32:1173–1184. doi:10.1080/0190416090 2943197

    CAS  Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 47:185–214. doi:10.1146/annurev.arplant.47.1.185

    CAS  PubMed  Google Scholar 

  • Purakayastha TJ, Huggins DR, Smith JL (2008) Carbon sequestration in native prairie, perennial grass, no-till, and cultivated palouse silt loam. Soil Sci Soc Am J 72:534–540. doi:10.2136/sssaj2005.0369

    CAS  Google Scholar 

  • Rao DLN, Pathak H (1996) Ameliorative influence of organic matter on biological activity in salt affected soils. Arid Soil Res Rehabil 10:311–319. doi:10.1080/15324989 609381446

    CAS  Google Scholar 

  • Rawat MS, Tripathi RP, Nand R (1996) Long-term effect of puddling and fertilizer use in rice-wheat-cowpea sequence on structural properties of soil. J Indian Soc Soil Sci 44:364–368

    Google Scholar 

  • Recep K, Fikrettin S, Erkol D, Cafer E (2009) Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol Control 50:194–198. doi:10.1016/j.biocontrol.2009.04.004

    Google Scholar 

  • Reddy MN, Sitaramayya M, Narayanaswamy S, Sairam A, Krishnakanth G (1999) Productivity and soil fertility changes under continuous fertilization and rice (Oryza sativa)- rice cropping system. Indian J Agric Sci 69:395–398

    Google Scholar 

  • Reganold JP, Palmer AS (1995) Significance of gravimetric versus volumetric measurements of soil quality under biodynamic, conventional and continuous grass management. J Soil Water Conserv 50:298–305

    Google Scholar 

  • Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498. doi:10.1128/AEM.67.2.495-498.2001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rezzonoco F, Binder C, Defago G, Moenne-Loccoz Y (2005) The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic chromista Pythium ultimum and promotes cucumber protection. Mol Plant Microbe Interact 9:991–1001. doi.org/10.1094/MPMI-18-0991

  • Rizzo DM, Garbelotto M, Hansen EA (2005) Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu Rev Phytopathol 43:309–335. doi:10.1146/annurev.phyto.42.040803.140418

    PubMed  Google Scholar 

  • Rodrigues EP, Rodrigues LS, de Oliveira ALM, Baldani VLD, dos Santos Teixeira KR, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant Soil 302:249–261. doi:10.1007/s11104-007-9476-1

    CAS  Google Scholar 

  • Rudrappa L, Purakayastha TJ, Singh D, Bhadraray S (2006) Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India. Soil Tillage Res 88:180–192. doi:10.1016/j.still.2005.05.008

    Google Scholar 

  • Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556. doi:10.1104/pp.108.127613

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100:4927–4932. doi:10.1073/pnas.0730845100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saviozzi A, Levi-Minzi R, Cardelli R, Riffaldi R (2001) A comparison of soil quality in adjacent cultivated, forest and native grassland soils. Plant Soil 233:251–259. doi:10.1023/A:1010526209076

    CAS  Google Scholar 

  • Schjonning P, Iversen BV, Munkholm LJ, Labouriau R, Jacobsen OH (2005) Pore characteristics and hydraulic properties of a sandy loam supplied for a century with either animal manure or mineral fertilizers. Soil Use Manag 21:265–275. doi:10.1111/j.1475-2743.2005.tb00398.x

    Google Scholar 

  • Schloter M, Lebuhn M, Heulin T, Hartmann A (2000) Ecology and evolution of bacterial microdiversity. FEMS Microbiol Rev 24:647–660. doi:10.1111/j.1574-6976.2000.tb00564.x/pdf

    CAS  PubMed  Google Scholar 

  • Setia RK, Sharma KN (2004) Effect of continuous cropping and long-term differential fertilization on profile stratification of DTPA-extractable micronutrients. J Food Agric Environ 2:260–265

    CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mungbean (Vigna radiata L.). J Appl Microbiol 42:155–159. doi:10.1111/j.1472-765X.2005.01827.x

    CAS  Google Scholar 

  • Sharma P, Tripathi RP, Singh S (2005) Tillage effects on soil physical properties and performance of rice-wheat-cropping system under shallow water table conditions of Tarai, Northern India. Eur J Agron 23:327–335. doi:10.1016/j.eja.2005.01.003

    Google Scholar 

  • Sims JT, Cunningham SD, Summer ME (1997) Assessing soil quality for environmental purposes: roles and challenges for soil scientists. J Enviorn Qual 26:20–25. doi:10.2134/jeq1997.00472425002600010004x

    CAS  Google Scholar 

  • Sims IM, Middleton K, Lane AG, Cairns AJ, Bacic A (2000) Characterisation of extracellular polysaccharides from suspension cultures of members of the Poaceae. Planta 210:261–268. doi:10.1007/PL00008133

    CAS  PubMed  Google Scholar 

  • Singh GB, Nambiar KKM (1986) Crop productivity and fertility under intensive use of chemical fertilizers in long-term field experiments. Indian J Agron 31:115–127

    Google Scholar 

  • Smith JL (2002) Soil quality: the role of microorganisms. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 2944–2957

    Google Scholar 

  • Smith JL, Paul EA (1990) The significance of soil microbial biomass estimation. In: Bollag J, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 357–396

    Google Scholar 

  • Sojka RE, Upchurch DR (1999) Reservations regarding the soil quality concept. Soil Sci Soc Am J 63:1039–1054

    CAS  Google Scholar 

  • Speir TW, Ross DJ (1978) Soil phosphatase and sulphatase. In: Burns RG (ed) Soil enzymes. Academic, London, pp 197–250

    Google Scholar 

  • Srinivasarao C, Vittal KPR, Kundu S, Gajbhiye PN, Vijayasankarbabu M (2010) Continuous cropping, fertilization, and organic manure application effects on Potassium in an Alfisol under arid conditions. Commun Soil Sci Plant Anal 41:783–796. doi:10.1080/00103620903565993

    CAS  Google Scholar 

  • Srinivasarao C, Kundu S, Venkateswarlu B, Lal R, Singh AK, Balaguravaiah G, Vijayasankarbabu M, Vittal KPR, Reddy S, Manideep VR (2013) Long-term effects of fertilization and manuring on groundnut yield and nutrient balance of Alfisols under rainfed farming in India. Nutr Cycl Agroecosyst. doi:10.1007/s10705-013-9575-8

    Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506. doi:10.1016/S0168-6445(00)00036-X

    CAS  PubMed  Google Scholar 

  • Sur HS, Sidhu AS, Singh R, Aggarwal GC, Sandhu KS (1993) Long-term effect of green manuring on soil physical properties and production potential in green manure-maize-wheat sequence. Ann Agric Res 14:125–131

    Google Scholar 

  • Tournas VH, Katsoudas E (2005) Mould and yeast flora in fresh berries, grapes and citrus fruits. Int J Food Microbiol 105:11–17. doi:10.1016/j.ijfoodmicro.2005.05.002

    CAS  PubMed  Google Scholar 

  • Turner B, Haygarth P (2005) Phosphatase activity in temperate pasture soils: potential regulation of labile organic phosphorous turnover by phosphodiesterase activity. Sci Total Environ 344:27–36. doi:10.1016/j.scitotenv.2005.02.003

    CAS  PubMed  Google Scholar 

  • van Veen JA, Morgan JAW, Whipps JM (2007) Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. In: Pinton A, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, pp 371–399. doi:10.1201/9781420005585.ch13

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi:10.1023/A:1026037216893

    CAS  Google Scholar 

  • Vessey JK, Buss TJ (2002) Bacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: controlled environmental studies. Can J Plant Sci 82:283–290. doi:10.4141/P01-047

    Google Scholar 

  • Wagnet RJ, Hutson JL (1997) Soil quality and its dependence on dynamic physical processes. J Environ Qual 26:41–48. doi:10.2134/jeq1997.00472425002600010007x

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51. doi:10.1104/pp. 102.019661

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610. doi:10.1016/0038-0717(95)00093-T

    CAS  Google Scholar 

  • Watts DB, Allen TH, Feng Y, Prior SA (2010) Soil microbial community dynamics as influenced by composted dairy manure, soil properties, and landscape position. Soil Sci 175:474–486

    CAS  Google Scholar 

  • Welbaum GE, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193. doi:10.1080/07352680490433295

    CAS  Google Scholar 

  • Wen D (1998) Agriculture in China: water and energy resources. In: Tso T, Tuan F, Faust M (eds) Agriculture in China: 1949–2030. IDEALS, Beltsville, pp 479–497. http://conservancy.umn.edu/handle/58873. Accessed on 1st Aug 2013

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107. doi:10.1023/A:1004347701584

    CAS  Google Scholar 

  • Yang YZ, Liu S, Zheng D, Feng S (2006) Effects of cadium, zinc and lead on soil enzyme activities. J Environ Sci 18:1135–1141. doi:10.1016/S1001-0742(06)60051-X

    Google Scholar 

  • Young IM (1995) Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembley). New Phytol 130:135–139. doi:10.1111/j.1469-8137.1995.tb01823.x

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debarati Bhaduri or Mohd. Sayeed Akhtar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhaduri, D., Pal, S., Purakayastha, T.J., Chakraborty, K., Yadav, R.S., Akhtar, M.S. (2015). Soil Quality and Plant-Microbe Interactions in the Rhizosphere. In: Lichtfouse, E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-16742-8_9

Download citation

Publish with us

Policies and ethics