Skip to main content

Metamaterials with Negative Poisson’s Ratio: A Review of Mechanical Properties and Deformation Mechanisms

  • Chapter
  • First Online:
Mechanics of Advanced Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Compared to conventional materials, materials with a negative Poisson’s ratio are endowed with many specific mechanical features; consequently, there are many potential applications for them. For the last two decades, many efforts have been made on this sort of metamaterial both experimentally and theoretically. This paper provides a brief review of those studies with a focus on mechanical properties and deformation mechanisms of the metamaterials. The latter are explained using a structure of a multi-phase metamaterial system for a more comprehensive understanding and as an inspiration for future works. Additionally, respective manufacturing methods and applications are also summarised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yaso M, Minagi, Y., Kanaizumi, T., Kubota, K., Hayashi, T., Morito, S., Ohba, T.: Study of Japanese sword from a viewpoint of steel strength. J. Alloys Compd. 577 (1), 690–694 (2013)

    Google Scholar 

  2. Lee, J., Singer, J.P., Thomas, E.L.: Micro-/nanostructured mechanical metamaterials. Adv. Mater. 24(36), 4782–4810 (2012)

    Google Scholar 

  3. Evans, K.E., Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking! Adv. Mater. 12(9), 617–628 (2000)

    Google Scholar 

  4. Critchley, R., Corni, I., Wharton, J.A., Walsh, F.C., Wood, R.J.K., Stokes, K.R.: A review of the manufacture, mechanical properties and potential applications of auxetic foams. Phys. Status Solidi (b) 250(10), 1963–1982 (2013)

    Google Scholar 

  5. Poisson, S.D.: Note sur L’extension des fils et des plaques. Annales de Chimie et de Physique 36, 384–385 (1827)

    Google Scholar 

  6. Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011)

    Google Scholar 

  7. Prawoto, Y.: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140–153 (2012)

    Google Scholar 

  8. Lakes, R.: No contractile obligations. Nature 358, 713–714 (1992)

    Google Scholar 

  9. Liu, Q.: Literature Review: Materials with Negative Poisson’s Ratio and Potential Applications to Aerospace and Defence. DSTO Defence Science and Technology Organisation, Victoria, Australia (2006)

    Google Scholar 

  10. Weiner, J.H.: Statistical Mechanics of Elasticity, 1st edn. Wiley, New York (1983)

    MATH  Google Scholar 

  11. Lakes, R.: Deformation mechanisms in negative Poisson’s ratio materials: structural aspects. J. Mater. Sci. 26, 2287–2292 (1991)

    Google Scholar 

  12. Timoshenko, S.: History of Strength of Materials. Courier Dover Publications, Dover (1983)

    Google Scholar 

  13. Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 2nd edn. Krieger Publishing Company, Malabar (1983)

    MATH  Google Scholar 

  14. Lakes, R.S., Lee, T., Bersie, A., Wang, Y.C.: Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565–567 (2001)

    Google Scholar 

  15. Lakes, R.: Advances in negative Poisson’s ratio materials. Adv. Mater. 5(4), 293–296 (1993)

    Google Scholar 

  16. Milton, G.W.: Composite materials with Poisson’s ratios close to—1. J. Mech. Phys. Solids 40(5), 1105–1137 (1992)

    MATH  MathSciNet  Google Scholar 

  17. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 1st edn. Cambridge University Press, Cambridge (1892)

    Google Scholar 

  18. Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proc. R. Soc. Lond. A 382(1782), 25–42 (1982)

    Google Scholar 

  19. Gibson, L.J., Ashby, M.F.: Cellular solids: structure and properties, 1st edn. Pergamon Press, Oxford (1988)

    Google Scholar 

  20. Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235(4792), 1038–1040 (1987)

    Google Scholar 

  21. Lakes, R.: Negative Poisson’s ratio materials. Science 238, 551 (1987)

    Google Scholar 

  22. Evans, K.E., Caddock, B.D: Microporous materials with negative Poisson’s ratios. II. Mechanisms and interpretation. J. Phys. D Appl. Phys. 22 (12), 1883 (1989)

    Google Scholar 

  23. Evans, K.E.: Tensile network microstructures exhibiting negative Poisson’s ratios. J. Phys. D Appl. Phys. 22 (12), 1870 (1989)

    Google Scholar 

  24. Evans, K.E., Nkansah, M.A., Hutchinson, I.J., Rogers, S.C.: Molecular network design. Nature 353, 124 (1991)

    Google Scholar 

  25. Almgren, R.F.: An isotropic three-dimensional structure with Poisson’s ratio = − 1. J. Elast. 15(4), 427–430 (1985)

    Google Scholar 

  26. Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Compos. Struct. 35(4), 403–422 (1996)

    Google Scholar 

  27. Kolpakov, A.G.: Determination of the average characteristics of elastic frameworks. J. Appl. Math. Mech. 49(6), 739–745 (1985)

    MATH  MathSciNet  Google Scholar 

  28. Carneiro, V.H., Meireles, J., Puga, H.: Auxetic materials—a review. Mater. Sci. Pol. 31(4), 561–571 (2013)

    Google Scholar 

  29. Gaspar, N., Ren, X.J., Smith, C.W., Grima, J.N., Evans, K.E.: Novel honeycombs with auxetic behaviour. Acta Mater. 53(8), 2439–2445 (2005)

    Google Scholar 

  30. Prall, D., Lakes, R.S.: Properties of a chiral honeycomb with a Poisson’s ratio of −1. Int. J. Mech. Sci. 39(3), 305–314 (1997)

    MATH  Google Scholar 

  31. Grima, J.N., Gatt, R., Farrugia, P.-S.: On the properties of auxetic meta-tetrachiral structures. Phys. Status Solidi (b) 245(3), 511–520 (2008)

    Google Scholar 

  32. Wojciechowski, K.W.: Non-chiral, molecular model of negative Poisson ratio in two dimensions. J. Phys. A Math. Gen. 36(47), 11765 (2003)

    MATH  MathSciNet  Google Scholar 

  33. Spadoni, A., Ruzzene, M.: Elasto-static micropolar behavior of a chiral auxetic lattice. J. Mech. Phys. Solids 60(1), 156–171 (2012)

    Google Scholar 

  34. Wojciechowski, K.W.: Two-dimensional isotropic system with a negative Poisson’s ratio. Phys. Lett. A 137(1–2), 60–64 (1989)

    Google Scholar 

  35. Grima, J.N., Jackson, R., Alderson, A., Evans, K.E.: Do zeolites have negative Poisson’s ratios? Adv. Mater. 12(24), 1912–1918 (2000)

    Google Scholar 

  36. He, C., Liu, P., Griffin, A.C.: Toward negative Poisson’s ratio polymers through molecular design. Macromolecules 31(9), 3145–3147 (1998)

    Google Scholar 

  37. Grima, J.N., Alderson, A., Evans, K.E.: Auxetic behaviour from rotating rigid units. Phys. Status Solidi (b) 242(3), 561–575 (2005)

    Google Scholar 

  38. Grima, J.N., Zammit, V., Gatt, R., Alderson, A., Evans, K.E.: Auxetic behaviour from rotating semi-rigid units. Phys. Status Solidi (b) 244(3), 866–882 (2007)

    Google Scholar 

  39. Alderson, A., Evans, K.E.: Molecular origin of auxetic behavior in tetrahedral framework silicates. Phys. Rev. Lett. 89(22), 22503 (2002)

    Google Scholar 

  40. Evans, K.E., Alderson, A., Christian, F.R.: Auxetic two-dimensional polymer networks. An example of tailoring geometry for specific mechanical properties. J. Chem. Soc. Faraday Trans. 91(16), 2671–2680 (1995)

    Google Scholar 

  41. Alderson, A., Alderson, K.L.: Auxetic materials. J. Aerosp. Eng. 221(4), 565–575 (2007)

    Google Scholar 

  42. Larsen, U.D., Signund, O., Bouwsta, S.: Design and fabrication of compliant micromechanisms and structures with negative Poisson’s ratio. J. Microelectromech. Syst. 6(2), 99–106 (1997)

    Google Scholar 

  43. Theocaris, P.S., Stavroulakis, G.E., Panagiotopoulos, P.D.: Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach. Arch. Appl. Mech. 67(4), 274–286 (1997)

    MATH  Google Scholar 

  44. Grima, J.N., Gatt, R., Alderson, A., Evans, K.E.: On the potential of connected stars as auxetic systems. Mol. Simul. 31(13), 925–935 (2005)

    Google Scholar 

  45. Smith, C.W., Grima, J.N., Evans, K.E.: A novel mechanism for generating auxetic behaviour in reticulated foams: missing rib foam model. Acta Mater. 48(17), 4349–4356 (2000)

    Google Scholar 

  46. Hou, X., Hu, H., Silberschmidt, V.: A novel concept to develop composite structures with isotropic negative Poisson’s ratio: effects of random inclusions. Compos. Sci. Technol. 72(15), 1848–1854 (2012)

    Google Scholar 

  47. Hou, X., Hu, H., Silberschmidt, V.: Numerical analysis of composite structure with in-plane isotropic negative Poisson’s ratio: effects of materials properties and geometry features of inclusions. Compos. B Eng. 58, 152–159 (2014)

    Google Scholar 

  48. Hu, H., Silberschmidt, V.: A composite material with Poisson’s ratio tunable from positive to negative values: an experimental and numerical study. J. Mater. Sci. 48(24), 8493–8500 (2013)

    Google Scholar 

  49. Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22(3), 361–366 (2010)

    Google Scholar 

  50. Overvelde, J.T.B., Shan, S., Bertoldi, K.: Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape. Adv. Mater. 24(17), 2337–2342 (2012)

    Google Scholar 

  51. Friis, E.A., Lakes, R.S., Park, J.B.: Negative Poisson’s ratio polymeric and metallic foams. J. Mater. Sci. 23, 4406–4414 (1988)

    Google Scholar 

  52. Choi, J.B., Lakes, R.S.: Nonlinear analysis of the Poisson’s ratio of negative Poisson’s ratio foams. J. Compos. Mater. 29(1), 113–128 (1995)

    Google Scholar 

  53. Lakes, R., Rosakis, P., Ruina, A.: Microbuckling instability in elastomeric cellular solids. J. Mater. Sci. 28(17), 4667–4672 (1993)

    Google Scholar 

  54. Lakes, R.S., Witt, R.: Making and characterizing negative Poisson’s ratio materials. Int. J. Mech. Eng. Educ. 30(1), 50–58 (2002)

    Google Scholar 

  55. Babaee, S., Shim, J., Weaver, J.C., Chen, E.R., Patel, N., Bertoldi, K.: 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25(36), 5044–5049 (2013)

    Google Scholar 

  56. Shim, J., Perdigou, C., Chen, E.R., Bertoldi, K., Reis, P.M.: Buckling-induced encapsulation of structured elastic shells under pressure. Proc. Natl. Acad. Sci. 109(16), 5978–5983 (2012)

    Google Scholar 

  57. Hou, X., Hu, H., Silberschmidt, V.: Tailoring structure of inclusion with strain-induced closure to reduce Poisson’s ratio of composite materials. J. Appl. Phys. 115, 4903–4925 (2014)

    Google Scholar 

  58. Wojciechowski, K.W.: Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol. Phys. 61(5), 1247–1258 (1987)

    Google Scholar 

  59. Wojciechowski, K.W., Brańka, A.C.: Negative Poisson ratio in a two-dimensional ‘‘isotropic’’ solid. Phys. Rev. A 40(12), 7222–7225 (1989)

    Google Scholar 

  60. Sigmund, O., Torquato, S., Aksay, I.A.: On the design of 1–3 piezocomposites using topology optimization. J. Mater. Res. 13(04), 1038–1048 (1998)

    Google Scholar 

  61. Miller, W., Smith, C.W., Scarpa, F., Evans, K.E.: Flatwise buckling optimization of hexachiral and tetrachiral honeycombs. Compos. Sci. Technol. 70(7), 1049–1056 (2010)

    Google Scholar 

  62. Spadoni, A., Ruzzene, M., Scarpa, F.: Global and local linear buckling behavior of a chiral cellular structure. Phys. Status Solidi (b) 242(3), 695–709 (2005)

    Google Scholar 

  63. Scarpa, F., Blain, S., Lew, T., Perrott, D., Ruzzene, M., Yates, J.R.: Elastic buckling of hexagonal chiral cell honeycombs. Compos. A 38(2), 280–289 (2007)

    Google Scholar 

  64. Grima, J.N.: New Auxetic Materials. University of Exeter, Exeter (2000)

    Google Scholar 

  65. Bornengo, D., Scarpa, F., Remillat, C.: Evaluation of hexagonal chiral structure for morphine airfoil concept. Proc. Institut. Mech. Eng. Part G J. Aerosp. Eng. 219(3), 185–192 (2005)

    Google Scholar 

  66. Grima, J.N., Gatt, R., Zammit, V., Williams, J.J., Evans, K.E., Alderson, A., Walton, R.I.: Natrolite: a zeolite with negative Poisson’s ratios. J. Appl. Phys. 101(8), 086102 (2007)

    Google Scholar 

  67. Grima, J.N., Evans, K.E.: Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 19(17), 1563–1565 (2000)

    Google Scholar 

  68. Grima, J.N., Jackson, R., Alderson, A., Evans, K.E.: On the auxetic properties of ‘rotating rectangles’ with different connectivity. J. Phys. Soc. Jpn. 74 (10), 2866–2867 (2005)

    Google Scholar 

  69. Attard, D., Manicaro, E., Gatt, R., Grima, J.N.: On the properties of auxetic rotating stretching squares. Phys. Status Solidi (b) 246(9), 2045–2054 (2009)

    Google Scholar 

  70. Grima, J.N., Manicaro, E., Attard, D.: Auxetic behaviour from connected different-sized squares and rectangles. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2126), 439–458 (2011)

    MATH  MathSciNet  Google Scholar 

  71. Grima, J., Evans, K.: Auxetic behavior from rotating triangles. J. Mater. Sci. 41(10), 3193–3196 (2006)

    Google Scholar 

  72. Grima, J.N., Gatt, R., Ellul, B., Chetcuti, E.: Auxetic behaviour in non-crystalline materials having star or triangular shaped perforations. J. Non-Cryst. Solids 356(37–40), 1980–1987 (2010)

    Google Scholar 

  73. Attard, D., Grima, J.N.: Auxetic behaviour from rotating rhombi. Phys. Status Solidi (b) 245(11), 2395–2404 (2008)

    Google Scholar 

  74. Grima, J.N., Farrugia, P.-S., Gatt, R., Attard, D.: On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys. Status Solidi (b) 245(3), 521–529 (2008)

    Google Scholar 

  75. Williams, J.J., Smith, C.W., Evans, K.E., Lethbridge, Z.A.D., Walton, R.I.: An analytical model for producing negative Poisson’s ratios and its application in explaining off-axis elastic properties of the NAT-type zeolites. Acta Mater. 55(17), 5697–5707 (2007)

    Google Scholar 

  76. Attard, D., Manicaro, E., Grima, J.N.: On rotating rigid parallelograms and their potential for exhibiting auxetic behaviour. Phys. Status Solidi (b) 246(9), 2033–2044 (2009)

    Google Scholar 

  77. Attard, D., Grima, J.N.: A three-dimensional rotating rigid units network exhibiting negative Poisson’s ratios. Phys. Status Solidi (b) 249(7), 1330–1338 (2012)

    Google Scholar 

  78. Alderson, A., Evans, K.E.: Rotation and dilation deformation mechanisms for auxetic behaviour in the α-cristobalite tetrahedral framework structure. Phys. Chem. Miner. 28(10), 711–718 (2001)

    Google Scholar 

  79. Grima, J.N., Gatt, R., Alderson, A., Evans, K.E.: An alternative explanation for the negative Poisson’s ratios in α-cristobalite. Mater. Sci. Eng., A 423(1–2), 219 (2006)

    Google Scholar 

  80. Grima, J., Farrugia, P., Caruana, C., Gatt, R., Attard, D.: Auxetic behaviour from stretching connected squares. J. Mater. Sci. 43(17), 5962–5971 (2008)

    Google Scholar 

  81. Chetcuti, E., Ellul, B., Manicaro, E., Brincat, J.-P., Attard, D., Gatt, R., Grima, J.N.: Modeling auxetic foams through semi-rigid rotating triangles. Phys. Status Solidi (b) 251(2), 297–306 (2014)

    Google Scholar 

  82. Rothenburg, L., Berlin, A.A., Bathurst, R.J.: Microstructure of isotropic materials with negative Poisson’s ratio. Nature 354 (6353), 470 (1991)

    Google Scholar 

  83. Pozniak, A.A., Smardzewski, J., Wojciechowski, K.W.: Computer simulations of auxetic foams in two dimensions. Smart Mater. Struct. 22(8), 084009 (2013)

    Google Scholar 

  84. Horrigan, E.J., Smith, C.W., Scarpa, F.L., Gaspar, N., Javadi, A.A., Berger, M.A., Evans, K.E.: Simulated optimisation of disordered structures with negative Poisson’s ratios. Mech. Mater. 41(8), 919–927 (2009)

    Google Scholar 

  85. Blumenfeld, R., Edwards, S.: Theory of strains in auxetic materials. J. Supercond. Novel Magn. 25(3), 565–571 (2012)

    Google Scholar 

  86. Evans, K.E., Nkansah, M.A., Hutchinson, I.J.: Modelling negative Poisson ratio effects in network-embedded composites. Acta Metall. Mater. 40(9), 2463–2469 (1992)

    Google Scholar 

  87. Grima, J.N., Cauchi, R., Gatt, R., Attard, D.: Honeycomb composites with auxetic out-of-plane characteristics. Compos. Struct. 106, 150–159 (2013)

    Google Scholar 

  88. Hou, X., Hu, H., Silberschmidt, V.: Erratum to: a composite material with Poisson’s ratio tunable from positive to negative values: an experimental and numerical study. J. Mater. Sci. 49 (1), 461 (2014)

    Google Scholar 

  89. Hall, L.J., Coluci, V.R., Galvão, D.S., Kozlov, M.E., Zhang, M., Dantas, S.O., Baughman, R.H.: Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320(5875), 504–507 (2008)

    Google Scholar 

  90. Fung, Y.C.: Foundations of Solid Mechanics International Series in Dynamics. Prentice Hall, Englewood Cliffs (1965)

    Google Scholar 

  91. Choi, J.B., Lakes, R.S.: Non-linear properties of polymer cellular materials with a negative Poisson’s ratio. J. Mater. Sci. 27(17), 4678–4684 (1992)

    Google Scholar 

  92. Choi, J.B., Lakes, R.S.: Non-linear properties of metallic cellular materials with a negative Poisson’s ratio. J. Mater. Sci. 27(19), 5375–5381 (1992)

    Google Scholar 

  93. Xinchun, S., Lakes, R.S.: Stability of elastic material with negative stiffness and negative Poisson’s ratio. Phys. Status Solidi (b) 244 (3), 807 (2007)

    Google Scholar 

  94. Wang, Y.C., Lakes, R.S.: Composites with inclusions of negative bulk modulus: extreme damping and negative Poisson’s ratio. J. Compos. Mater. 39(18), 1645–1657 (2005)

    Google Scholar 

  95. Burns, S.: Negative Poisson’s ratio materials. Science 238(4826), 551 (1987)

    Google Scholar 

  96. Chan, N., Evans, K.E.: Indentation resilience of convertional and auxetic foams. J. Cell. Plast. 34(3), 231–260 (1998)

    Google Scholar 

  97. Lakes, R.S., Elms, K.: Indentability of conventional and negative Poisson’s ratio foams. J. Compos. Mater. 27(12), 1193–1202 (1993)

    Google Scholar 

  98. Lim, T.C., Alderson, A., Alderson, K.L.: Experimental studies on the impact properties of auxetic materials. Phys. Status Solidi (b) 251(2), 307–313 (2014)

    Google Scholar 

  99. Bezazi, A., Scarpa, F.: Mechanical behaviour of conventional and negative Poisson’s ratio thermoplastic polyurethane foams under compressive cyclic loading. Int. J. Fatigue 29(5), 922–930 (2007)

    Google Scholar 

  100. Alderson, K.L., Simkins, V.R., Coenen, V.L., Davies, P.J., Alderson, A.: How to make auxetic fibre reinforced composites. Phys. Status Solidi (b) 242(3), 509–518 (2005)

    Google Scholar 

  101. Alderson, K.L., Coenen, V.L.: The low velocity impact response of auxetic carbon fibre laminates. Phys. Status Solidi (b) 245(3), 489–496 (2008)

    Google Scholar 

  102. Coenen, V.L., Alderson, K.L.: Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates. Phys. Status Solidi (b) 248(1), 66–72 (2011)

    Google Scholar 

  103. Alderson, K.L., Webber, R.S., Evans, K.E.: Novel variations in the microstructure of auxetic ultra-high molecular weight polyethylene. Part 2: mechanical properties. Polym. Eng. Sci. 40(8), 1906–1914 (2000)

    Google Scholar 

  104. Alderson, K.L., Webber, R.S., Kettle, A.P., Evans, K.E.: Novel fabrication route for auxetic polyethylene. Part 1. Processing and microstructure. Polym. Eng. Sci. 45(4), 568–578 (2005)

    Google Scholar 

  105. Alderson, K.L., Pickles, A.P., Neale, P.J., Evans, K.E.: Auxetic polyethylene: the effect of a negative poisson’s ratio on hardness. Acta Metall. Mater. 42(7), 2261–2266 (1994)

    Google Scholar 

  106. Alderson, K.L., Fitzgerald, A., Evans, K.E.: The strain dependent indentation resilience of auxetic microporous polyethylene. J. Mater. Sci. 35(16), 4039–4047 (2000)

    Google Scholar 

  107. Lakes, R.S.: Design considerations for materials with negative Poisson’s ratios. J. Mech. Des. 115(4), 696–700 (1993)

    Google Scholar 

  108. Brincat, J.-P., Azzopardi, K.M., Buttigieg, A., Scarpa, F., Grima, J.N., Gatt, R.: Foams as 3D perforated systems: an analysis of their Poisson’s ratios under compression. Phys. Status Solidi (b) 251(11), 2233–2238 (2014)

    Google Scholar 

  109. Bezazi, A., Boukharouba, W., Scarpa, F.: Mechanical properties of auxetic carbon/epoxy composites: static and cyclic fatigue behaviour. Phys. Status Solidi (b) 246(9), 2102–2110 (2009)

    Google Scholar 

  110. Bianchi, M., Scarpa, F., Smith, C.: Stiffness and energy dissipation in polyurethane auxetic foams. J. Mater. Sci. 43(17), 5851–5860 (2008)

    Google Scholar 

  111. Bezazi, A., Scarpa, F.: Tensile fatigue of conventional and negative Poisson’s ratio open cell PU foams. Int. J. Fatigue 31(3), 488–494 (2009)

    Google Scholar 

  112. Bianchi, M., Scarpa, F., Smith, C.W.: Shape memory behaviour in auxetic foams: mechanical properties. Acta Mater. 58(3), 858–865 (2010)

    Google Scholar 

  113. Scarpa, F., Pastorino, P., Garelli, A., Patsias, S., Ruzzene, M.: Auxetic compliant flexible PU foams: static and dynamic properties. Phys. Status Solidi (b) 242(3), 681–694 (2005)

    Google Scholar 

  114. Scarpa, F., Ciffo, L.G., Yates, J.R.: Dynamic properties of high structural integrity auxetic open cell foam. Smart Mater. Struct. 13(1), 49 (2004)

    Google Scholar 

  115. Herakovich, C.T.: Composite laminates with negative through-the-thickness Poisson’s ratios. J. Compos. Mater. 18(5), 447–455 (1984)

    Google Scholar 

  116. Bezazi, A.R., El Mahi, A., Berthelot, J.M., Bezzazi, B.: Flexural fatigue behavior of cross-ply laminates: an experimental approach. Strength Mater. 35(2), 149–161 (2003)

    Google Scholar 

  117. Donoghue, J.P., Alderson, K.L., Evans, K.E.: The fracture toughness of composite laminates with a negative Poisson’s ratio. Phys. Status Solidi (b) 246(9), 2011–2017 (2009)

    Google Scholar 

  118. Scarpa, F., Yates, J.R., Ciffo, L.G., Patsias, S.: Dynamic crushing of auxetic open-cell polyurethane foam. J. Mech. Eng. Sci. 216(12), 1153–1156 (2002)

    Google Scholar 

  119. Choi, J.B., Lakes, R.S.: Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis. Int. J. Fract. 80(1), 73–83 (1996)

    Google Scholar 

  120. Hou, Y., Tai, Y.H., Lira, C., Scarpa, F., Yates, J.R., Gu, B.: The bending and failure of sandwich structures with auxetic gradient cellular cores. Compos. A Appl. Sci. Manuf. 49, 119–131 (2013)

    Google Scholar 

  121. Scarpa, F., Bullough, W.A., Lumley, P.: Trends in acoustic properties of iron particle seeded auxetic polyurethane foam. Proc. Institut. Mech. Eng. Part C J. Mech. Eng. Sci. 218(2), 241–244 (2004)

    Google Scholar 

  122. Haberman, M.R., Hook, D.T., Klatt, T.D., Hewage, T.A.M., Alderson, A., Alderson, K.L., Scarpa, F.L.: Ultrasonic characterization of polymeric composites containing auxetic inclusions. J. Acoust. Soc. Am. 132 (3), 1961 (2012)

    Google Scholar 

  123. Ruzzene, M., Scarpa, F.: Directional and band-gap behavior of periodic auxetic lattices. Phys. Status Solidi (b) 242(3), 665–680 (2005)

    Google Scholar 

  124. Alderson, K.L., Webber, R.S., Mohammed, U.F., Murphy, E., Evans, K.E.: An experimental study of ultrasonic attenuation in microporous polyethylene. Appl. Acoust. 50(1), 23–33 (1997)

    Google Scholar 

  125. Krödel, S., Delpero, T., Bergamini, A., Ermanni, P., Kochmann, D.M.: 3D auxetic microlattices with independently controllable acoustic band gaps and quasi-static elastic moduli. Adv. Eng. Mater. 16(4), 357–363 (2014)

    Google Scholar 

  126. Chen, Y.J., Scarpa, F., Farrow, I.R., Liu, Y.J., Leng, J.S.: Composite flexible skin with large negative Poisson’s ratio range: numerical and experimental analysis. Smart Mater. Struct. 22(4), 045005 (2013)

    Google Scholar 

  127. Alderson, A., Alderson, K.L., Chirima, G., Ravirala, N., Zied, K.M.: The in-plane linear elastic constants and out-of-plane bending of 3-coordinated ligament and cylinder-ligament honeycombs. Compos. Sci. Technol. 70(7), 1034–1041 (2010)

    Google Scholar 

  128. Lorato, A., Innocenti, P., Scarpa, F., Alderson, A., Alderson, K.L., Zied, K.M., Ravirala, N., Miller, W., Smith, C.W., Evans, K.E.: The transverse elastic properties of chiral honeycombs. Compos. Sci. Technol. 70(7), 1057–1063 (2010)

    Google Scholar 

  129. Alderson, A., Rasburn, J., Evans, K.E.: Mass transport properties of auxetic (negative Poisson’s ratio) foams. Phys. Status Solidi (b) 244(3), 817–827 (2007)

    Google Scholar 

  130. Alderson, A., Rasburn, J., Evans, K.E., Grima, J.N.: Auxetic polymeric filters display enhanced de-fouling and pressure compensation properties. Membr. Technol. 137, 6–8 (2001)

    Google Scholar 

  131. Rasburn, J., Mullarkey, P.G., Evans, K.E., Alderson, A., Ameer-Beg, S., Perrie, W.: Auxetic structures for variable permeability systems. AIChE J. 47(11), 2623–2626 (2001)

    Google Scholar 

  132. Xu, T., Li, G.: A shape memory polymer based syntactic foam with negative Poisson’s ratio. Mater. Sci. Eng. A 528(22–23), 6804–6811 (2011)

    Google Scholar 

  133. Bianchi, M., Scarpa, F., Smith, C.W., Whittell, G.: Physical and thermal effects on the shape memory behaviour of auxetic open cell foams. J. Mater. Sci. 45(2), 341–347 (2010)

    Google Scholar 

  134. Alderson, A., Alderson, K.L., McDonald, S.A., Mottershead, B., Nazare, S., Withers, P.J., Yao, Y.T.: Piezomorphic materials. Macromol. Mater. Eng. 298(3), 318–327 (2013)

    Google Scholar 

  135. Uzun, M., Patel, I.: Tribological properties of auxetic and conventional polypropylene weft knitted fabrics. Arch. Mater. Sci. Eng. 44(2), 120–125 (2010)

    Google Scholar 

  136. Mitschke, H., Schwerdtfeger, J., Schury, F., Stingl, M., Körner, C., Singer, R.F., Robins, V., Mecke, K., Schröder-Turk, G.E.: Finding auxetic frameworks in periodic tessellations. Adv. Mater. 23(22–23), 2669–2674 (2011)

    Google Scholar 

  137. Jaglinski, T., Kochmann, D., Stone, D., Lakes, R.S.: Composite materials with viscoelastic stiffness greater than diamond. Science 315(5812), 620–622 (2007)

    Google Scholar 

  138. Dong, L., Stone, D.S., Lakes, R.S.: Anelastic anomalies and negative Poisson’s ratio in tetragonal. BaTiO3 ceramics. Appl. Phys. Lett. 96 (14), 141904–141903 (2010)

    Google Scholar 

  139. Li, D., Jaglinski, T., Stone, D.S., Lakes, R.S.: Temperature insensitive negative Poisson’s ratios in isotropic alloys near a morphotropic phase boundary. Appl. Phys. Lett. 101(25), 251903–251907 (2012)

    Google Scholar 

  140. Tretiakov, K.V., Wojciechowski, K.W.: Partially auxetic behavior in fcc crystals of hard-core repulsive Yukawa particles. Phys. Status Solidi (b) 251(2), 383–387 (2014)

    Google Scholar 

  141. Evans, K.E.: Auxetic polymers. Membr. Technol. 2001(137), 9 (2001)

    Google Scholar 

  142. Miller, W., Ren, Z., Evans, K.E.: A negative Poisson’s ratio carbon fibre composite using a negative Poisson’s ratio yarn reinforcement. Compos. Sci. Technol. 72(7), 761–766 (2012)

    Google Scholar 

  143. Wright, J.R., Sloan, M.R., Evans, K.E.: Tensile properties of helical auxetic structure: a numerical study. J. Appl. Phys. 108(4), 044905–044913 (2010)

    Google Scholar 

  144. Wright, J.R., Burns, M.K., James, E., Sloan, M.R., Evans, K.E.: One the design and characterisation of low-stiffness auxetic yarns and fabrics. Text. Res. J. 82(7), 645–652 (2012)

    Google Scholar 

  145. Willshaw, S., Mullin, T.: Pattern switching in two and three-dimensional soft solids. Soft Matter 8(6), 1747–1750 (2012)

    Google Scholar 

  146. Kang, S.H., Shan, S., Košmrlj, A., Noorduin, W.L., Shian, S., Weaver, J.C., Clarke, D.R., Bertoldi, K.: Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. Phys. Rev. Lett. 112(9), 098701 (2014)

    Google Scholar 

  147. Xu, B., Arias, F., Brittain, S.T., Zhao, X., Grzybowski, B., Torquato, S., Whitesides, G.M.: Making negative Poisson’s ratio microstructures by soft lithography. Adv. Mater. 11(14), 1186–1189 (1999)

    Google Scholar 

  148. Fozdar, D.Y., Soman, P.P., Lee, J.W., Han, L.H., Chen, S.: Three-dimensional polymer constructs exhibiting a tunable negative Poisson’s ratio. Adv. Funct. Mater. 21 (14), 2712–2720 (2011)

    Google Scholar 

  149. Buckmann, T., Stenger, N., Kadic, M., Kaschke, J., Frolich, A., Kennerknecht, T., Eberl, C., Thiel, M., Wegener, M.: Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24(20), 2710–2714 (2012)

    Google Scholar 

  150. Kang, S.H., Shan, S., Noorduin, W.L., Khan, M., Aizenberg, J., Bertoldi, K.: Buckling-induced reversible symmetry breaking and amplification of chirality using supported cellular structures. Adv. Mater. 25(24), 3380–3385 (2013)

    Google Scholar 

  151. Sanami, M., Ravirala, N., Alderson, K., Alderson, A.: Auxetic materials for sports applications. Procedia Eng. 72, 453–458 (2014)

    Google Scholar 

  152. Ma, Z., Bian, H., Sun, C., Hulbert, G.M., Bishnoi, K., Rostam-Abadi, F.: Functionally-graded NPR material for a blast-protective deflector. In: Proceedings of the 2009 Ground Vehicle System Engineering and Technology Symposium, Dearborn, 1–12 Aug 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaonan Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hou, X., Silberschmidt, V.V. (2015). Metamaterials with Negative Poisson’s Ratio: A Review of Mechanical Properties and Deformation Mechanisms. In: Silberschmidt, V., Matveenko, V. (eds) Mechanics of Advanced Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17118-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17118-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17117-3

  • Online ISBN: 978-3-319-17118-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics