Skip to main content

The Role of Lipid in Misfolding and Amyloid Fibril Formation by Apolipoprotein C-II

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 855))

Abstract

Apolipoproteins are a key component of lipid transport in the circulatory system and share a number of structural features that facilitate this role. When bound to lipoprotein particles, these proteins are relatively stable. However, in the absence of lipids they display conformational instability and a propensity to aggregate into amyloid fibrils. Apolipoprotein C-II (apoC-II) is a member of the apolipoprotein family that has been well characterised in terms of its misfolding and aggregation. In the absence of lipid, and at physiological ionic strength and pH, apoC-II readily forms amyloid fibrils with a twisted ribbon-like morphology that are amenable to a range of biophysical and structural analyses. Consistent with its lipid binding function, the misfolding and aggregation of apoC-II are substantially affected by the presence of lipid. Short-chain phospholipids at submicellar concentrations significantly accelerate amyloid formation by inducing a tetrameric form of apoC-II that can nucleate fibril aggregation. Conversely, phospholipid micelles and bilayers inhibit the formation of apoC-II ribbon-type fibrils, but induce slow formation of amyloid with a distinct straight fibril morphology. Our studies of the effects of lipid at each stage of amyloid formation, detailed in this chapter, have revealed complex behaviour dependent on the chemical nature of the lipid molecule, its association state, and the protein:lipid ratio.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Apo:

Apolipoprotein

CD:

Circular dichroism

CMC:

Critical micelle concentration

DHPC:

1,2-dihexanoyl-sn-glycero-3 -phosphocholine

DHPS:

1,2-dihexanoyl-sn-glycero-3-phospho-L-serine

DMPC:

1,2-dimyristoyl-sn-glycero-3-phosphocholine

DnPC:

1,2-diacyl-sn-glycero-3- phosphocholine where n = 3–9 carbon acyl chains

DPC:

Dodecylphosphocholine

FRET:

Fluorescence resonance energy transfer

LysoMPC:

1-myristoyl-2-hydroxy-sn-glycero -3-phosphocholine

NBD:

Nitrobenzoxadiazole

SDS:

Sodium dodecyl sulphate

STEM:

Scanning transmission electron microscopy

TEM:

Transmission electron microscopy

ThT:

Thioflavin T

References

  • Atcliffe BW, MacRaild CA, Gooley PR, Howlett GJ (2001) The interaction of human apolipoprotein C-I with sub-micellar phospholipid. Eur J Biochem/FEBS 268(10):2838–2846

    Article  CAS  Google Scholar 

  • Bergstrom J, Murphy C, Eulitz M, Weiss DT, Westermark GT, Solomon A, Westermark P (2001) Codeposition of apolipoprotein A-IV and transthyretin in senile systemic (ATTR) amyloidosis. Biochem Biophys Res Commun 285(4):903–908

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom J, Murphy CL, Weiss DT, Solomon A, Sletten K, Hellman U, Westermark P (2004) Two different types of amyloid deposits–apolipoprotein A-IV and transthyretin–in a patient with systemic amyloidosis. Lab Invest 84(8):981–988

    Article  PubMed  Google Scholar 

  • Bieschke J, Zhang Q, Powers ET, Lerner RA, Kelly JW (2005) Oxidative metabolites accelerate Alzheimer’s amyloidogenesis by a two-step mechanism, eliminating the requirement for nucleation. Biochemistry 44(13):4977–4983

    Article  CAS  PubMed  Google Scholar 

  • Binger KJ, Pham CL, Wilson LM, Bailey MF, Lawrence LJ, Schuck P, Howlett GJ (2008) Apolipoprotein C-II amyloid fibrils assemble via a reversible pathway that includes fibril breaking and rejoining. J Mol Biol 376(4):1116–1129

    Article  CAS  PubMed  Google Scholar 

  • Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P Jr, Lerner RA, Kelly JW (2006) Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat Chem Biol 2(5):249–253

    Article  CAS  PubMed  Google Scholar 

  • Coriu D, Dispenzieri A, Stevens FJ, Murphy CL, Wang S, Weiss DT, Solomon A (2003) Hepatic amyloidosis resulting from deposition of the apolipoprotein A-I variant Leu75Pro. Amyloid 10(4):215–223

    Article  CAS  PubMed  Google Scholar 

  • Griffin MD, Mok ML, Wilson LM, Pham CL, Waddington LJ, Perugini MA, Howlett GJ (2008) Phospholipid interaction induces molecular-level polymorphism in apolipoprotein C-II amyloid fibrils via alternative assembly pathways. J Mol Biol 375(1):240–256

    Article  CAS  PubMed  Google Scholar 

  • Griffin MD, Yeung L, Hung A, Todorova N, Mok YF, Karas JA, Gooley PR, Yarovsky I, Howlett GJ (2012) A cyclic peptide inhibitor of apoC-II peptide fibril formation: mechanistic insight from NMR and molecular dynamics analysis. J Mol Biol 416(5):642–655

    Article  CAS  PubMed  Google Scholar 

  • Gursky O, Atkinson D (1998) Thermodynamic analysis of human plasma apolipoprotein C-1: high-temperature unfolding and low-temperature oligomer dissociation. Biochemistry 37(5):1283–1291

    Article  CAS  PubMed  Google Scholar 

  • Hanson CL, Ilag LL, Malo J, Hatters DM, Howlett GJ, Robinson CV (2003) Phospholipid complexation and association with apolipoprotein C-II: insights from mass spectrometry. Biophys J 85(6):3802–3812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hatters DM, Howlett GJ (2002) The structural basis for amyloid formation by plasma apolipoproteins: a review. Eur Biophys J 31(1):2–8

    Article  CAS  PubMed  Google Scholar 

  • Hatters DM, MacPhee CE, Lawrence LJ, Sawyer WH, Howlett GJ (2000) Human apolipoprotein C-II forms twisted amyloid ribbons and closed loops. Biochemistry 39(28):8276–8283

    Article  CAS  PubMed  Google Scholar 

  • Hatters DM, Lawrence LJ, Howlett GJ (2001) Sub-micellar phospholipid accelerates amyloid formation by apolipoprotein C-II. FEBS Lett 494(3):220–224

    Article  CAS  PubMed  Google Scholar 

  • Hatters DM, Minton AP, Howlett GJ (2002a) Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. J Biol Chem 277(10):7824–7830

    Article  CAS  PubMed  Google Scholar 

  • Hatters DM, Wilson MR, Easterbrook-Smith SB, Howlett GJ (2002b) Suppression of apolipoprotein C-II amyloid formation by the extracellular chaperone, clusterin. Eur J Biochem/FEBS 269(11):2789–2794

    Article  CAS  Google Scholar 

  • Hung A, Griffin MD, Howlett GJ, Yarovsky I (2008) Effects of oxidation, pH and lipids on amyloidogenic peptide structure: implications for fibril formation? Eur Biophys J 38(1):99–110

    Article  CAS  PubMed  Google Scholar 

  • Hung A, Griffin MD, Howlett GJ, Yarovsky I (2009) Lipids enhance apolipoprotein C-II-derived amyloidogenic peptide oligomerization but inhibit fibril formation. J Phys Chem B 113(28):9447–9453

    Article  CAS  PubMed  Google Scholar 

  • Legge FS, Treutlein H, Howlett GJ, Yarovsky I (2007) Molecular dynamics simulations of a fibrillogenic peptide derived from apolipoprotein C-II. Biophys Chem 130(3):102–113

    Article  CAS  PubMed  Google Scholar 

  • MacPhee CE, Howlett GJ, Sawyer WH (1999) Mass spectrometry to characterize the binding of a peptide to a lipid surface. Anal Biochem 275(1):22–29

    Article  CAS  PubMed  Google Scholar 

  • MacRaild CA, Hatters DM, Howlett GJ, Gooley PR (2001) NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate. Biochemistry 40(18):5414–5421

    Article  CAS  PubMed  Google Scholar 

  • MacRaild CA, Hatters DM, Lawrence LJ, Howlett GJ (2003) Sedimentation velocity analysis of flexible macromolecules: self-association and tangling of amyloid fibrils. Biophys J 84(4):2562–2569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacRaild CA, Howlett GJ, Gooley PR (2004) The structure and interactions of human apolipoprotein C-II in dodecyl phosphocholine. Biochemistry 43(25):8084–8093

    Article  CAS  PubMed  Google Scholar 

  • Medeiros LA, Khan T, El Khoury JB, Pham CL, Hatters DM, Howlett GJ, Lopez R, O’Brien KD, Moore KJ (2004) Fibrillar amyloid protein present in atheroma activates CD36 signal transduction. J Biol Chem 279(11):10643–10648

    Article  CAS  PubMed  Google Scholar 

  • Mucchiano GI, Haggqvist B, Sletten K, Westermark P (2001a) Apolipoprotein A-1-derived amyloid in atherosclerotic plaques of the human aorta. J Pathol 193(2):270–275

    Article  CAS  PubMed  Google Scholar 

  • Mucchiano GI, Jonasson L, Haggqvist B, Einarsson E, Westermark P (2001b) Apolipoprotein A-I-derived amyloid in atherosclerosis. Its association with plasma levels of apolipoprotein A-I and cholesterol. Am J Clin Pathol 115(2):298–303

    Article  CAS  PubMed  Google Scholar 

  • Obici L, Bellotti V, Mangione P, Stoppini M, Arbustini E, Verga L, Zorzoli I, Anesi E, Zanotti G, Campana C, Vigano M, Merlini G (1999) The new apolipoprotein A-I variant leu(174) → Ser causes hereditary cardiac amyloidosis, and the amyloid fibrils are constituted by the 93-residue N-terminal polypeptide. Am J Pathol 155(3):695–702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Obici L, Franceschini G, Calabresi L, Giorgetti S, Stoppini M, Merlini G, Bellotti V (2006) Structure, function and amyloidogenic propensity of apolipoprotein A-I. Amyloid 13(4):191–205

    Article  CAS  PubMed  Google Scholar 

  • Ryan TM, Howlett GJ, Bailey MF (2008) Fluorescence detection of a lipid-induced tetrameric intermediate in amyloid fibril formation by apolipoprotein C-II. J Biol Chem 283(50):35118–35128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryan TM, Teoh CL, Griffin MD, Bailey MF, Schuck P, Howlett GJ (2010) Phospholipids enhance nucleation but not elongation of apolipoprotein C-II amyloid fibrils. J Mol Biol 399(5):731–740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryan TM, Griffin MD, Bailey MF, Schuck P, Howlett GJ (2011a) NBD-labeled phospholipid accelerates apolipoprotein C-II amyloid fibril formation but is not incorporated into mature fibrils. Biochemistry 50(44):9579–9586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryan TM, Griffin MD, Teoh CL, Ooi J, Howlett GJ (2011b) High-affinity amphipathic modulators of amyloid fibril nucleation and elongation. J Mol Biol 406(3):416–429

    Article  CAS  PubMed  Google Scholar 

  • Ryan TM, Friedhuber A, Lind M, Howlett GJ, Masters C, Roberts BR (2012) Small amphipathic molecules modulate secondary structure and amyloid fibril-forming kinetics of Alzheimer disease peptide Abeta(1–42). J Biol Chem 287(20):16947–16954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segrest JP, De Loof H, Dohlman JG, Brouillette CG, Anantharamaiah GM (1990) Amphipathic helix motif: classes and properties. Proteins 8(2):103–117

    Article  CAS  PubMed  Google Scholar 

  • Segrest JP, Garber DW, Brouillette CG, Harvey SC, Anantharamaiah GM (1994) The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. Adv Protein Chem 45:303–369

    Article  CAS  PubMed  Google Scholar 

  • Stewart CR, Haw A 3rd, Lopez R, McDonald TO, Callaghan JM, McConville MJ, Moore KJ, Howlett GJ, O’Brien KD (2007a) Serum amyloid P colocalizes with apolipoproteins in human atheroma: functional implications. J Lipid Res 48(10):2162–2171

    Article  CAS  PubMed  Google Scholar 

  • Stewart CR, Wilson LM, Zhang Q, Pham CL, Waddington LJ, Staples MK, Stapleton D, Kelly JW, Howlett GJ (2007b) Oxidized cholesterol metabolites found in human atherosclerotic lesions promote apolipoprotein C-II amyloid fibril formation. Biochemistry 46(18):5552–5561

    Article  CAS  PubMed  Google Scholar 

  • Teoh CL, Griffin MD, Howlett GJ (2011a) Apolipoproteins and amyloid fibril formation in atherosclerosis. Protein Cell 2(2):116–127

    Article  CAS  PubMed  Google Scholar 

  • Teoh CL, Pham CL, Todorova N, Hung A, Lincoln CN, Lees E, Lam YH, Binger KJ, Thomson NH, Radford SE, Smith TA, Muller SA, Engel A, Griffin MD, Yarovsky I, Gooley PR, Howlett GJ (2011b) A structural model for apolipoprotein C-II amyloid fibrils: experimental characterization and molecular dynamics simulations. J Mol Biol 405(5):1246–1266

    Article  CAS  PubMed  Google Scholar 

  • Wang G (2008) NMR of membrane-associated peptides and proteins. Curr Protein Pept Sci 9(1):50–69

    Article  PubMed  Google Scholar 

  • Westermark P, Mucchiano G, Marthin T, Johnson KH, Sletten K (1995) Apolipoprotein A1-derived amyloid in human aortic atherosclerotic plaques. Am J Pathol 147(5):1186–1192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson LM, Mok YF, Binger KJ, Griffin MD, Mertens HD, Lin F, Wade JD, Gooley PR, Howlett GJ (2007) A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis. J Mol Biol 366(5):1639–1651

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Griffin MD, Binger KJ, Schuck P, Howlett GJ (2012) An equilibrium model for linear and closed-loop amyloid fibril formation. J Mol Biol 421(2–3):364–377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yazaki M, Liepnieks JJ, Barats MS, Cohen AH, Benson MD (2003) Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int 64(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Zdunek J, Martinez GV, Schleucher J, Lycksell PO, Yin Y, Nilsson S, Shen Y, Olivecrona G, Wijmenga S (2003) Global structure and dynamics of human apolipoprotein CII in complex with micelles: evidence for increased mobility of the helix involved in the activation of lipoprotein lipase. Biochemistry 42(7):1872–1889

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Powers ET, Nieva J, Huff ME, Dendle MA, Bieschke J, Glabe CG, Eschenmoser A, Wentworth P Jr, Lerner RA, Kelly JW (2004) Metabolite-initiated protein misfolding may trigger Alzheimer’s disease. Proc Natl Acad Sci U S A 101(14):4752–4757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

T.M.R. is the recipient of the Alzheimer’s Australia Dementia Research Foundation Fellowship. M.D.W.G is the recipient of the C.R. Roper Fellowship and an Australian Research Council Post Doctoral Fellowship (project number DP110103528). This work was supported by grants from the Australian Research Council and the National Health and Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. W. Griffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ryan, T.M., Mok, YF., Howlett, G.J., Griffin, M.D.W. (2015). The Role of Lipid in Misfolding and Amyloid Fibril Formation by Apolipoprotein C-II. In: Gursky, O. (eds) Lipids in Protein Misfolding. Advances in Experimental Medicine and Biology, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-17344-3_7

Download citation

Publish with us

Policies and ethics