Skip to main content

Biophotonic Modelling of Cardiac Optical Imaging

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 859))

Abstract

Computational models have been recently applied to simulate and better understand the nature of fluorescent photon scattering and optical signal distortion during cardiac optical imaging. The goal of such models is both to provide a useful post-processing tool to facilitate a more accurate and faithful comparison between computational simulations of electrical activity and experiments, as well as providing essential insight into the mechanisms underlying this distortion, suggesting ways in which it may be controlled or indeed utilised to maximise the information derived from the recorded fluorescent signal. Here, we present different modelling methodologies developed and used in the field to simulate both the explicit processes involved in optical signal synthesis and the resulting consequences of the effects of photon scattering within the myocardium upon the optically-detected signal. We focus our attentions to two main types of modelling approaches used to simulate light transport in cardiac tissue, specifically continuous (reaction-diffusion) and discrete stochastic (Monte Carlo) methods. For each method, we provide both a summary of the necessary methodological details of such models, in addition to brief reviews of relevant application studies which have sought to apply these methods to elucidate important information regarding experimentally-recorded optical signals under different circumstances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Khadra A, Nikolski V, Efimov IR (2000) The role of electroporation in defibrillation. Circ Res 87(9):797–804

    Article  CAS  PubMed  Google Scholar 

  • Arridge SR (1993) A finite element approach for modeling photon transport in tissue. Med Phys 20(2):299–309

    Article  CAS  PubMed  Google Scholar 

  • Baxter WT, Mironov SF, Zaitsev AV, Jalife J (2001) Biophysical journal – visualizing excitation waves inside cardiac muscle using transillumination. Biophys J 80(1):516–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernus O, Wellner M, Mironov SF, Pertsov AM (2004) Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods. Phys Med Biol 50(2):215–229

    Article  Google Scholar 

  • Bernus O, Mukund KS, Pertsov AM (2007) Detection of intramyocardial scroll waves using absorptive transillumination imaging. J Biomed Opt 12(1):014035

    Article  PubMed  Google Scholar 

  • Bishop MJ, Rodriguez B, Trayanova N, Gavaghan DJ (2006a) Modulation of shock-end virtual electrode polarisation as a direct result of 3D fluorescent photon scattering. In: 28th Annual international conference of the IEEE engineering in medicine and biology society, 2006. EMBS’06, pp 1556–1559

    Google Scholar 

  • Bishop MJ, Rodriguez B, Trayanova N, Gavaghan DJ (2006b) Inference of intramural wavefront orientation from optical recordings in realistic whole-heart models. Biophys J 91(10):3957–3958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop MJ, Rodriguez J, Eason B, Whiteley JP, Trayanova N, Gavaghan DJ (2006c) Synthesis of voltage-sensitive optical signals: application to panoramic optical mapping. Biophys J 90(8):2938–2945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop MJ, Gavaghan DJ, Trayanova NA, Rodriguez B (2007a) Photon scattering effects in optical mapping of propagation and arrhythmogenesis in the heart. J Electrocardiol 40(6 Suppl):S75–S80

    Article  PubMed Central  PubMed  Google Scholar 

  • Bishop MJ, Rodriguez B, Qu F, Efimov IR, Gavaghan DJ, Trayanova NA (2007b) The role of photon scattering in optical signal distortion during Arrhythmia and defibrillation. Biophys J 93(10):3714–3726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop MJ, Bub G, Garny A, Gavaghan DJ, Rodriguez B (2009) An investigation into the role of the optical detection set-up in the recording of cardiac optical mapping signals: a Monte Carlo simulation study. Physica D 238(11–12):1008–1018

    Article  CAS  Google Scholar 

  • Bishop MJ, Boyle PM, Plank G, Welsh DG, Vigmond EJ (2010a) Modeling the role of the coronary vasculature during external field stimulation. IEEE Trans Biomed Eng 57(10):2335–2345

    Article  PubMed Central  PubMed  Google Scholar 

  • Bishop MJ, Plank G, Burton RAB, Schneider JE, Gavaghan DJ, Grau V, Kohl P (2010b) Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of electrophysiological function. Am J Physiol Heart Circ Physiol 298(2):H699–H718

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop MJ, Rowley A, Rodriguez B, Plank G, Gavaghan DJ, Bub G (2011) The role of photon scattering in voltage-calcium fluorescent recordings of ventricular fibrillation. Biophys J 101(2):307–318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop MJ, Plank G, Vigmond E (2012) Investigating the role of the coronary vasculature in the mechanisms of defibrillation. Circ Arrhyth Electrophysiol 5(1):210–219

    Article  Google Scholar 

  • Boyle PM, Williams JC, Ambrosi CM, Entcheva E, Trayanova NA (2013) A comprehensive multiscale framework for simulating optogenetics in the heart. Nat Commun 4:2370

    PubMed  Google Scholar 

  • Bray M, Wikswo JP (2003) Examination of optical depth effects on fluorescence imaging of cardiac propagation. Biophys J 85(6):4134–4145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheong WF, Prahl SA, Welch AJ (1990) A review of the optical properties of biological tissues. IEEE Quantum Electron 26(12):2166–2185

    Article  Google Scholar 

  • Choi BR, Salama G (1998) Optical mapping of atrioventricular node reveals a conduction barrier between atrial and nodal cells. Am J Physiol Heart Circ Physiol 274(3):H829–H845

    CAS  Google Scholar 

  • Ding L, Splinter R, Knisley SB (2001) Quantifying spatial localization of optical mapping using Monte Carlo simulations. IEEE Trans Biomed Eng 48(10):1098–1107

    Article  CAS  PubMed  Google Scholar 

  • Efimov IR, Mazgalev TN (1998) High-resolution, three-dimensional fluorescent imaging reveals multilayer conduction pattern in the atrioventricular node. Circulation 98(1):54–57

    Article  CAS  PubMed  Google Scholar 

  • Efimov IR, Sidorov V, Cheng Y, Wollenzier B (1999) Evidence of three dimensional scroll waves with ribbon shaped filament as a mechanism of ventricular tachycardia in the isolated rabbit heart. J Cardiovasc Electrophysiol 10(11):1452–1462

    Article  CAS  PubMed  Google Scholar 

  • Efimov IR, Aguel F, Cheng Y, Wollenzier B, Trayanova N (2000) Virtual electrode polarization in the far field: implications for external defibrillation. Am J Physiol Heart Circ Physiol 48(3):H1055

    Google Scholar 

  • Gardner CM, Jacques SL (1996) Light transport in tissue: accurate expressions for one dimensional fluence rate and escape function based upon Monte Carlo simulation. Lasers Surg Med 18:129–138

    Article  CAS  PubMed  Google Scholar 

  • Girouard SD, Laurita KR, Rosenbaum DS (1996) Unique properties of cardiac action potentials recorded with voltage-sensitive dyes. J Cardiovasc Electrophysiol 7(11):1024–1038

    Article  CAS  PubMed  Google Scholar 

  • Gray RA (1999) What exactly are optically recorded action potentials? J Cardiovasc Electrophysiol 10(11):1463–1466

    Article  CAS  PubMed  Google Scholar 

  • Haskell RC, Svaasand LO, Tsay T, Feng T, McAdams MS, Tromberg BJ (1994) Boundary conditions for the diffusion equation in radiative transfer. J Opt Soc Am A 11(10):2727

    Article  CAS  Google Scholar 

  • Hielscher AH, Jacques SL, Wang L, Tittel FK (1995) The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues. Phys Med Biol 40(11):1957–1975

    Article  CAS  PubMed  Google Scholar 

  • Hyatt CJ, Mironov SF, Wellner M, Berenfeld O, Popp AK, Weitz DA, Jalife J, Pertsov AM (2003) Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns. Biophys J 85(4):2673–2683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hyatt CJ, Mironov SF, Vetter FJ, Zemlin CW Pertsov AM (2005) Optical action potential upstroke morphology reveals near-surface transmural propagation direction. Cir Res 97(3):277–284

    Article  CAS  Google Scholar 

  • Hyatt CJ, Zemlin CW, Smith RM, Matiukas A, Pertsov AM, Bernus O (2008) Reconstructing subsurface electrical wave orientation from cardiac epi-fluorescence recordings: Monte Carlo versus diffusion approximation. Opt Express 16(18):13758–15772

    Article  CAS  PubMed  Google Scholar 

  • Jacques SL (1998) Light distributions from point, line and plane sources for photochemical reactions and fluorescence in turbid biological tissues. Photochem Photobiol 67(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Janks DL, Roth BJ (2002) Averaging over depth during optical mapping of unipolar stimulation. IEEE Trans Biomed Eng 49(9):1051–1054

    Article  PubMed  Google Scholar 

  • Knisley SB (1995) Transmembrane voltage changes during unipolar stimulation of rabbit ventricle. Circ Res 77(6):1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Luther S, Fenton FH, Kornreich BG, Squires A, Bittihn P, Hornung D, Zabel M, Flanders J, Gladuli A, Campoy L, Cherry EM, Luther G, Hasenfuss G, Krinsky VI, Pumir A, Gilmour RF, Bodenschatz E (2012) Low-energy control of electrical turbulence in the heart. Nature 475(7355):235–239

    Article  Google Scholar 

  • Okada E, Schweiger M, Arridge SR, Firbank M, Delpy DT (1996) Experimental validation of Monte Carlo and finite-element methods for the estimation of the optical path length in inhomogeneous tissue. App Opt 35(19):3362

    Article  CAS  Google Scholar 

  • Omichi C (2004) Intracellular Ca dynamics in ventricular fibrillation. Am J Physiol Heart Circ Physiol 286(5):H1836–H1844

    Article  CAS  PubMed  Google Scholar 

  • Pathmanathan P, Gray RA (2013) Ensuring reliability of safety-critical clinical applications of computational cardiac models. Front Physiol 4:358

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramshesh VK, Knisley SB (2003) Spatial localization of cardiac optical mapping with multiphoton excitation. J Biomed Opt 8(2):253–259

    Article  PubMed  Google Scholar 

  • Ramshesh VK, Knisley SB (2006) Use of light absorbers to alter optical interrogation with epi-illumination and transillumination in three-dimensional cardiac models. J Biomed Opt 11(2):024019

    Article  PubMed  Google Scholar 

  • Rodriguez B, Li L, Eason JC, Efimov IR, Trayanova NA (2005) Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks. Circ Res 97(2):168–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen H, Wang G (2011) A study on tetrahedron-based inhomogeneous Monte Carlo optical simulation. Biomed Opt Express 2(1):44–57

    Article  PubMed Central  Google Scholar 

  • Trayanova N, Plank G, Rodriguez B (2006) What have we learned from mathematical models of defibrillation and postshock arrhythmogenesis? Application of bidomain simulations. Heart Rhythm 3(10):1232–1235

    Article  PubMed Central  PubMed  Google Scholar 

  • Walton RD, Bernus O (2009) Computational modeling of cardiac dual calcium-voltage optical mapping. In: Annual international conference on IEEE engineering in medicine biology society, pp 2827–2830

    Google Scholar 

  • Wang L, Jacques SL, Zheng L (1995) MCML—Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed 47(2):131–146

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Weiss JN, Chou C-C, Attin M, Hayashi H, Lin S-F (2005) Dissociation of membrane potential and intracellular calcium during ventricular fibrillation. J Cardiovasc Electrophysiol 16(2):186–192

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Bishop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bishop, M.J., Plank, G. (2015). Biophotonic Modelling of Cardiac Optical Imaging. In: Canepari, M., Zecevic, D., Bernus, O. (eds) Membrane Potential Imaging in the Nervous System and Heart. Advances in Experimental Medicine and Biology, vol 859. Springer, Cham. https://doi.org/10.1007/978-3-319-17641-3_15

Download citation

Publish with us

Policies and ethics