Skip to main content

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 859 Accesses

Abstract

This chapter starts with a brief introduction of the analog-to-digital conversion process in Sect. 2.1 and a discussion of factors that define the performance of ADCs in Sect. 2.2. ADC performance limitations and trends are addressed in Sect. 2.3. In Sect. 2.4, a brief discussion of popular Nyquist-rate ADC topologies is given where the topologies most relevant to the focus of this book are discussed with the associated tradeoffs. A signal/system-aware design approach which exploits certain signal properties to enhance the ADC performance is discussed in Sect. 2.5 and examples are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van de Plassche, R.J. 2003. CMOS integrated analog-to-digital and digital-to-analog converters, 2nd ed. Boston: Springer.

    Book  MATH  Google Scholar 

  2. Kester, W.A. 2005. Data conversion handbook. Amsterdam: Elsevier.

    Google Scholar 

  3. Das, A. 2010. Digital communication: principles and system modeling. Berlin: Springer.

    Book  Google Scholar 

  4. Abidi, A. 2007. The path to the software-defined radio receiver. IEEE Journal of Solid-State Circuits 42(5): 954–966.

    Article  Google Scholar 

  5. van Roermund, A.H.M. 2007. Smart, flexible, and future-proof data converters. In 18th European conference on circuit theory and design. pp. 308–319.

    Google Scholar 

  6. Gustavsson, M., J.J. Wikner, and N. Tan. 2000. CMOS data converters for communications, 2000th ed. Boston: Springer.

    Google Scholar 

  7. IEEE standard for terminology and test methods for analog-to-digital converters. IEEE Std 1241-2010 (Revision of IEEE Std 1241-2000), pp. 1–139, Jan 2011.

    Google Scholar 

  8. A. N. S. Institute, S. of C. T. Engineers, and G. E. D. (Firm). 2011. American national standard: measurement procedure for noise power ratio. Society of Cable Telecommunications Engineers.

    Google Scholar 

  9. Nyquist, H. 2002. Certain topics in telegraph transmission theory. Proceedings of the IEEE 90(2): 280–305.

    Article  Google Scholar 

  10. Shannon, C.E. 1998. Communication in the presence of noise. Proceedings of the IEEE 86(2): 447–457.

    Article  Google Scholar 

  11. Jonsson, B.E. 2011. Using figures-of-merit to evaluate measured A/D-converter performance. In Proceedings of 2011 IMEKO IWADC and IEEE ADC forum, Orvieto, Italy.

    Google Scholar 

  12. Walden, R.H. 1999. Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications 17(4): 539–550.

    Article  Google Scholar 

  13. Schreier, R. and G.C. Temes. 2004. Understanding delta-sigma data converters, 1st ed. N.J. Piscataway, and N.J. Hoboken. Chichester: Wiley-IEEE Press.

    Google Scholar 

  14. Bult, K. 2006. The effect of technology scaling on power dissipation in analog circuits. In Analog circuit design, ed. M. Steyaert, J.H. Huijsing, and A.H.M. van Roermund, 251–294. Netherlands: Springer.

    Chapter  Google Scholar 

  15. Uyttenhove, K., and M.S.J. Steyaert. 2002. Speed-power-accuracy tradeoff in high-speed CMOS ADCs. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 49(4): 280–287.

    Article  Google Scholar 

  16. Toumazou, C., Moschytz, G.S., Gilbert, B., and & 0 more. 2004. Trade-offs in analog circuit design: the designer’s companioned, 2002 ed. Dordrecht: Springer.

    Google Scholar 

  17. Chiu, Y. 1908. Recent advances in digital-domain background calibration techniques for multistep analog-to-digital converters. In 9th international conference on solid-state and integrated-circuit technology, 2008. ICSICT 2008, pp. 1905–1908.

    Google Scholar 

  18. Murmann, B., C. Vogel., and H. Koeppl. 2008. Digitally enhanced analog circuits: system aspects. In IEEE international symposium on circuits and systems, 2008. ISCAS 2008, pp. 560–563.

    Google Scholar 

  19. Murmann, B. 2010. Trends in low-power, digitally assisted A/D conversion. IEICE Transactions on Electronics E93-C(6): 718–729.

    Google Scholar 

  20. Temes, G.C., and J.C. Candy. 1990. A tutorial discussion of the oversampling method for A/D and D/A conversion. In IEEE international symposium on circuits and systems, 1990, vol. 2, pp. 910–913.

    Google Scholar 

  21. Dusan, Stepanovic. 2012. Calibration techniques for time-interleaved SAR A/D converters. Ph.D. Dissertation. EECS Department, University of California, Berkeley.

    Google Scholar 

  22. Murmann, B. ADC performance survey 1997–2013. http://www.stanford.edu/~murmann/adcsurvey.html.

  23. Pelgrom, M.J.M. 2012. Analog-to-digital conversion, 2nd ed. 2013 edition. New York: Springer.

    Google Scholar 

  24. Black, J.W.C., and D. Hodges. 1980. Time interleaved converter arrays. IEEE Journal of Solid-State Circuits 15(6): 1022–1029.

    Google Scholar 

  25. Lin, Y., K. Doris, H. Hegt, and A.H.M. Van Roermund. 2012. An 11b pipeline ADC with parallel-sampling technique for converting Multi-carrier signals. IEEE Transactions on Circuits and Systems I: Regular Papers 59(5): 906–914.

    Article  MathSciNet  Google Scholar 

  26. Shanbhag, N., and A. Singer. 2011. System-assisted analog mixed-signal design. In Design, automation test in Europe conference exhibition (DATE), 2011, pp. 1–6.

    Google Scholar 

  27. Murmann, B. 2013. Digitally assisted data converter design. In Proceedings of the ESSCIRC (ESSCIRC) 2013, pp. 24–31.

    Google Scholar 

  28. Max, J. 1960. Quantizing for minimum distortion. IRE Transactions on Information Theory 6(1): 7–12.

    Article  MathSciNet  Google Scholar 

  29. Lloyd, S. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28(2): 129–137.

    Article  MATH  MathSciNet  Google Scholar 

  30. Tsividis, Y. 1997. Externally linear, time-invariant systems and their application to companding signal processors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 44(2): 65–85.

    Article  Google Scholar 

  31. Maheshwari, V., Serdijn, W.A., and J.R. Long. 2007. Companding baseband switched capacitor filters and ADCs for WLAN applications. In IEEE international symposium on circuits and systems, 2007. ISCAS 2007, pp. 749–752.

    Google Scholar 

  32. Candes, E.J., and M.B. Wakin. 2008. An introduction to compressive sampling. IEEE Signal Processing Magazine 25(2): 21–30.

    Article  Google Scholar 

  33. Chen, X., Z. Yu, S. Hoyos, B.M. Sadler, and J. Silva-Martinez. 2011. A sub-nyquist rate sampling receiver exploiting compressive sensing. IEEE Transactions on Circuits and Systems I: Regular Papers 58(3): 507–520.

    Article  MathSciNet  Google Scholar 

  34. Wakin, M., S. Becker, E. Nakamura, M. Grant, E. Sovero, D. Ching, J. Yoo, J. Romberg, A. Emami-Neyestanak, and E. Candes. 2012. A nonuniform sampler for wideband spectrally-sparse environments. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2(3): 516–529.

    Article  Google Scholar 

  35. Yang, J. 2010. Time domain interference cancellation for cognitive radios and future wireless systems. PhD diss., EECS Department, University of California, Berkeley.

    Google Scholar 

  36. Silva-Martinez, J., and A.I. Karşılayan. 2010. High-performance continuous-time filters with on-chip tuning. In Analog circuit design, ed. A.H.M. Roermund, H. Casier, and M. Steyaert, 147–166. Netherlands: Springer.

    Chapter  Google Scholar 

  37. Mark, J.W., and T.D. Todd. 1981. A nonuniform sampling approach to data compression. IEEE Transactions on Communications 29(1): 24–32.

    Article  Google Scholar 

  38. Tsividis, Y. 2010. Event-driven data acquisition and digital signal processing—a tutorial. IEEE Transactions on Circuits and Systems II: Express Briefs 57(8): 577–581.

    Article  MathSciNet  Google Scholar 

  39. Weltin-Wu, C., and Y. Tsividis. 2013. An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution. IEEE Journal of Solid-State Circuits 48(9): 2180–2190.

    Article  Google Scholar 

  40. Kim, H., C. van Hoof, and R.F. Yazicioglu. 2011. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications. In 2011 annual international conference of the IEEE engineering in medicine and biology society, pp. 2196–2199.

    Google Scholar 

  41. Kozmin, K., J. Johansson, and J. Delsing. 2009. Level-crossing ADC performance evaluation toward ultrasound application. IEEE Transactions on Circuits and Systems I: Regular Papers 56(8): 1708–1719.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Lin .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lin, Y., Hegt, H., Doris, K., van Roermund, A.H.M. (2015). Enhancing ADC Performance by Exploiting Signal Properties. In: Power-Efficient High-Speed Parallel-Sampling ADCs for Broadband Multi-carrier Systems. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-17680-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17680-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17679-6

  • Online ISBN: 978-3-319-17680-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics