Skip to main content

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

The study of turbulence has always been a challenge for scientists working on geophysical flows. Turbulent flows are common in nature and have an important role in geophysical disciplines such as river morphology, landscape modeling, atmospheric dynamics and ocean currents. At present, new measurement and observation techniques suitable for fieldwork can be combined with laboratory and theoretical work to advance the understanding of river processes. Nevertheless, despite more than a century of attempts to correctly formalize turbulent flows, much still remains to be done by researchers and engineers working in hydraulics and fluid mechanics. In this contribution we introduce a general framework for the analysis of river turbulence. We revisit some findings and theoretical frameworks and provide a critical analysis of where the study of turbulence is important and how to include detailed information of this in the analysis of fluvial processes. We also provide a perspective of some general aspects that are essential for researchers/practitioners addressing the subject for the first time. Furthermore, we show some results of interest to scientists and engineers working on river flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad JD, Frias CE, Buscaglia GC, Garcia MH (2013) Modulation of the flow structure by progressive bedforms in the Kinoshita meandering channel. Earth Surf Proc Land 38(13):1612–1622

    Google Scholar 

  • Aberle J, Koll K (2004) Double-averaged flow field over static armour layers. In: Greco M, Carravetta A, Della Morte R (eds) River flow 2004. Taylor & Francis Group, London

    Google Scholar 

  • Adrian RJ, Christensen KT, Liu ZC (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29:275–290

    Article  Google Scholar 

  • Aleixo RJF (2013) Experimental study of the early stages of a dam-break flow over fixed and mobile beds. PhD thesis, UCL, Louvain-la-Neuve

    Google Scholar 

  • Antonia RA, Atkinson JD (1973) High-order moments of Reynolds shear stress fluctuations in a turbulent boundary layer. J Fluid Mech 58(3):581–593

    Article  Google Scholar 

  • Baiamonte G, Giordano G, Ferro V (1995) Advances on velocity profile and flow resistance law in gravel bed rivers. Excerpta 9:41–89

    Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575

    Article  Google Scholar 

  • Best J (2005) The fluid dynamics of river dunes: a review and some future research directions. J Geophys Res Oceans. doi:10.1029/2004JF000218

    Google Scholar 

  • Blanckaert K, De Vriend HJ (2005) Turbulence characteristics in sharp open-channel bends. Phys Fluids 17(5):055102

    Article  Google Scholar 

  • Blanckaert K, Han R, Pilotto F, Pusch M (2014) Effects of large wood on morphology, flow and turbulence in a Lowland River. In: Schleiss AJ, De Cesare G, Franca MJ, Pfister M (eds) River flow 2014. Taylor & Francis, Leiden

    Google Scholar 

  • Bousmar D, Zech Y (1999) Momentum transfer for practical flow computation in compound channels. J Hydraul Eng 125(7):696–706

    Article  Google Scholar 

  • Brocchini M, Kennedy AB, Soldini L, Mancinelli A (2004) Topographically controlled, breaking-wave-induced macrovortices. Part 1. Widely separated breakwaters. J Fluid Mech 507:289–307

    Article  Google Scholar 

  • Buffin-Bélanger T, Roy AG (1998) Effects of a pebble cluster on the turbulent structure of a depth-limited flow in a gravel-bed river. Geomorphology 25(3):249–267

    Article  Google Scholar 

  • Buffin-Bélanger T, Roy AG, Kirkbride AD (2000) On large-scale flow structures in a gravel-bed river. Geomorphology 32(3):417–435

    Article  Google Scholar 

  • Cardoso AH, Graf WH, Gust G (1989) Uniform flow in a smooth open channel. J Hydraul Res 5:603–616

    Article  Google Scholar 

  • Cellino M, Lemmin U (2004) Influence of coherent flow structures on the dynamics of suspended sediment transport in open-channel flow. J Hydraul Eng 130(11):1077–1088

    Article  Google Scholar 

  • Chassaing P (2000) Turbulence en Mcanique des Fluides. Cépaduès-Éditions, Toulouse

    Google Scholar 

  • Coleman JM (1969) Brahmaputra River: channel processes and sedimentation. Sediment Geol 3:129–329

    Article  Google Scholar 

  • Corino ER, Brodkey RS (1969) A visual investigation of the wall region in turbulent flow. J Fluid Mech 37(1):1–30

    Article  Google Scholar 

  • Currie IG (1993) Fundamental mechanics of fluids. McGraw Hill, Toronto

    Google Scholar 

  • Detert M, Weitbrecht V, Jirka GH (2010) Laboratory measurements on turbulent pressure fluctuations in and above gravel beds. J Hydraul Eng 136:779–789

    Article  Google Scholar 

  • Dey S (2014) Fluvial hydrodynamics: hydrodynamic and sediment transport phenomena. Springer, Berlin

    Google Scholar 

  • Dey S, Sarkar S, Solari L (2011) Near-bed turbulence characteristics at the entrainment threshold of sediment beds. J Hydraul Eng 137:945–958

    Article  Google Scholar 

  • Ferreira RML, Ferreira L, Ricardo AM, Franca MJ (2010) Impacts of sand transport on flow variables and dissolved oxygen in gravel-bed streams suitable salmonid spawning. River Research and Applications 26(10):414–438

    Article  Google Scholar 

  • Ferreira RML, Franca MJ, Leal JGAB, Cardoso AH (2012) Flow over rough mobile beds: Friction factor and vertical distribution of the longitudinal mean velocity. Water Resour Res 48(5):W05529

    Article  Google Scholar 

  • Foufoula-Georgiou E, Kumar P (1994) Wavelets in geophysics. Academic Press, San Diego

    Google Scholar 

  • Franca MJ (2005a) A field study of turbulent flows in shallow gravel-bed rivers. PhD thesis, EPFL, Lausanne

    Google Scholar 

  • Franca MJ (2005b) Flow dynamics over a gravel riverbed. In: Proceedings of the XXXI IAHR Congress, Seoul

    Google Scholar 

  • Franca MJ, Lemmin U (2006a) Detection and reconstruction of coherent structures based on wavelet multiresolution analysis. In: Ferreira RML, Alves ECTL, Leal JGAB, Cardoso AH (eds) River flow 2006. Taylor & Francis Group, London

    Google Scholar 

  • Franca MJ, Lemmin U (2006b) Turbulence measurements in shallow flows in gravel-bed rivers. In: Piasecki M (ed) 7th international conference on hydroscience and engineering. Session Wed1_S2: MINI-SYMPOSIUM fluvial hydraulics and river morphodynamics, College of Engineering, Drexel University, Philadelphia

    Google Scholar 

  • Franca MJ, Lemmin U (2014) Detection and reconstruction of large-scale coherent flow structures in gravel-bed rivers. Earth Surf Proc Land 40(1):93–104

    Article  Google Scholar 

  • Franca MJ, Ferreira RML, Lemmin U (2008) Parameterization of the logarithmic layer of double-averaged streamwise velocity profiles in gravel-bed river flows. Adv Water Resour 31(6):915–925

    Article  Google Scholar 

  • Franca MJ, Ferreira RML, Cardoso AH, Lemmin U (2010) Double-average methodology applied to turbulent gravel-bed river flows. In: Dittrich A, Koll K, Aberle J Geisenhainer (eds) River flow 2010. Bundesanstalt fr Wasserbau, Braunschweig

    Google Scholar 

  • Frisch U (1995) Turbulence. The legacy of A. N. Kolmogorov. Cambridge University Press, New York

    Google Scholar 

  • Ghilardi T, Franca MJ, Schleiss AJ (2014) Bulk velocity measurements by video analysis of dye tracer in a macro-rough channel. Meas Sci Technol 25(3):035003

    Article  Google Scholar 

  • Grass AJ (1971) Structural features of turbulent flow over smooth and rough boundaries. J Fluid Mech 50(02):233–255

    Article  Google Scholar 

  • Gyr A, Schmid A (1997) Turbulent flows over smooth erodible sand beds in flumes. J Hydraul Res 35(4):525–544

    Article  Google Scholar 

  • Ha HK, Chough SK (2003) Intermittent turbulent events over sandy current ripples: a motion-picture analysis of flume experiments. Sed Geol 161:295–308

    Article  Google Scholar 

  • Holmes P, Lumley JL, Berkooz G (1998) Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, New York

    Google Scholar 

  • Hua BL, Kline P (1998) An exact criterion for the stirring properties of nearly two-dimensional turbulence. Physica D 113(1):98–110

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454(1971):903–995

    Google Scholar 

  • Huang NE, Shen Z, Long SR (1999) A new view of nonlinear water waves: the Hilbert Spectrum 1. Annu Rev Fluid Mech 31(1):417–457

    Article  Google Scholar 

  • Hurther D, Lemmin U (2000) Shear stress statistics and wall similarity analysis in turbulent boundary layers using a high-resolution 3-D ADVP. IEEE J Oceanic Eng 25(4):446–457

    Article  Google Scholar 

  • Jovanovic J (2004) The statistical dynamics of turbulence. Springer, Berlin

    Google Scholar 

  • Kara S, Stoesser T, Sturm TW (2012) Turbulence statistics in compound channels with deep and shallow overbank flows. J Hydraul Res 50(5):482–493

    Article  Google Scholar 

  • Katul G, Wiberg P, Albertson J, Hornberger G (2008) A mixing layer theory for flow resistance in shallow streams. Water Resour Res 38(11):1250

    Google Scholar 

  • Kennedy AB, Brocchini M, Soldini L, Gutierrez E (2006) Topographically controlled, breaking-wave-induced macrovortices. Part 2. Rip current topographies. J Fluid Mech 559:57–80

    Article  Google Scholar 

  • Kim HT, Kline SJ, Reynolds WC (1971) The production of turbulence near a smooth wall in a turbulent boundary layer. J Fluid Mech 50(01):133–160

    Article  Google Scholar 

  • Kirkbride AD, Ferguson R (1995) Turbulent flow structure in a gravel-bed river: Markov chain analysis of the fluctuating velocity profile. Earth Surf Proc Land 20(8):721–733

    Article  Google Scholar 

  • Kironoto BA, Graf WH (1994) Turbulence characteristics in rough uniform open-channel flow. Proc ICE-Water Marit Energy 106(4):333–344

    Article  Google Scholar 

  • Kline SJ, Reynolds WC, Schraub FA, Runstadler PW (1967) The structure of turbulent boundary layers. J Fluid Mech 30(04):741–773

    Article  Google Scholar 

  • Knight DW, Shiono K (1990) Turbulence measurements in a shear layer region of a compound channel. J Hydraul Res 28(2):175–196

    Article  Google Scholar 

  • Kostaschuk RA, Church MA (1993) Macroturbulence generated by dunes: Fraser River, Canada. Sed Geol 85:25–37

    Article  Google Scholar 

  • Koziol AP (2013) Three-dimensional turbulence intensity in a compound channel. J Hydraul Eng 139:852–864

    Article  Google Scholar 

  • LaCasce JH (2008) Statistics from Lagrangian observations. Prog Oceanogr 77:1–29

    Article  Google Scholar 

  • Leite Ribeiro M, Blanckaert K, Roy AG, Schleiss AJ (2002) Flow and sediment dynamics in channel confluences. J Geophys Res Earth Surf. doi:10.1029/2011JF002171

  • Levi E (1995) The science of water: the foundation of modern hydraulics. ASCE Press, New York

    Google Scholar 

  • Lopes AF, Nogueira HIS, Ferreira RML, Franca MJ (2013) Laboratorial study of continuously fed low-submergence gravity currents over smooth and rough beds. In: EGU general assembly conference abstracts, Vienna

    Google Scholar 

  • Lu SS, Willmarth WW (1973) Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J Fluid Mech 60(3):481–511

    Article  Google Scholar 

  • Lumley JL, Newman GR (1977) The return to isotropy of homogeneous turbulence. J Fluid Mech 82(1):161–178

    Article  Google Scholar 

  • Manes C, Pokrajac D, McEwan I (2007) Double-averaged open-channel flows with small relative submergence. J Hydraul Eng 138(8):896–904

    Article  Google Scholar 

  • Matthes GH (1947) Macroturbulence in natural stream flow. Trans Am Geophys Union 28:255–265

    Article  Google Scholar 

  • Mera I, Franca MJ, Anta J, Peña E (2014) Turbulence anisotropy in a compound meandering channel with different submergence conditions. Adv Water Resour. doi:10.1016/j.advwatres.2014.10.012

    Google Scholar 

  • Mignot E, Hurther D, Bartelhemy E (2009) On the structure of shear stress and turbulent kinetic energy flux across the roughness layer of a gravel-bed channel flow. J Fluid Mech 638:423–452

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1971) Statistical fluid mechanics: mechanics of turbulence, vol I. MIT Press, Boston

    Google Scholar 

  • Nakagawa H, Nezu I (1977) Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J Fluid Mech 80(1):99–128

    Article  Google Scholar 

  • Nazarenko S, Laval JP (2000) Non-local two-dimensional turbulence and Batchelor’s regime for passive scalars. J Fluid Mech 408:301–321

    Article  Google Scholar 

  • Neary VS, Constantinescu SG, Bennett SJ, Diplas P (2012) Effects of vegetation on turbulence, sediment transport, and stream morphology. J Hydraul Eng 138:765–776

    Article  Google Scholar 

  • Nepf HM (1999) Drag, turbulence and diffusion in flow through emergent vegetation. Water Resour Res 35(2):479–489

    Article  Google Scholar 

  • Nepf HM (2012) Hydrodynamics of vegetated channels. J Hydraul Res 50(3):262–279

    Article  Google Scholar 

  • Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. IAHR monograph series, A.A. Balkema, Rotterdam, Netherlands

    Google Scholar 

  • Nicholas AP (2001) Computational fluid dynamics modelling of boundary roughness in gravel-bed rivers: an investigation of the effects of random variability in bed elevation. Earth Surf Proc Land 26(4):345–362

    Article  Google Scholar 

  • Nikora V (2007) Hydrodynamics of gravel-bed rivers: scale issues. Dev Earth Surf Process 11:61–81

    Article  Google Scholar 

  • Nikora V (2010) Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics. River Res Appl 26(4):367–384

    Article  Google Scholar 

  • Nikora V, Rowinski PM (2008) Rough-bed flows in geophysical, environmental, and engineering systems: double-averaging approach and its applications. Acta Geophys 56(3):529–533

    Article  Google Scholar 

  • Nikora V, Roy AG (2012) Secondary flows in rivers: theoretical framework, recent advances, and current challenges. In Church M, Biron PM, Roy AG (eds) Gravel bed rivers: processes, tools, environments. John Wiley & Sons, New York

    Google Scholar 

  • Nikora V, Smart GM (1997) Turbulence characteristics of New Zealand gravel-bed rivers. J Hydraul Eng 123(9):764–773

    Article  Google Scholar 

  • Nikora V, McEwan I, McLean S, Coleman S, Pokrajac D, Walters R (2007a) Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. J Hydraul Eng 133(8):873–883

    Article  Google Scholar 

  • Nikora V, McLean S, Coleman S, Pokrajac D, McEwan I, Campbell I, Aberle J, Clunie D, Koll K (2007b) Double-averaging concept for rough-bed open-channel and overland flows: applications. J Hydraul Eng 133(8):884–985

    Article  Google Scholar 

  • Nikora V, Ballio F, Coleman S, Pokrajac D (2013) Spatially averaged flows over mobile rough beds: definitions, averaging theorems, and conservation equations. J Hydraul Eng 139(8):803–811

    Article  Google Scholar 

  • Nogueira HIS (2014) Experimental characterization of unsteady gravity currents developing over smooth and rough beds. PhD thesis, UC, Coimbra

    Google Scholar 

  • Nogueira HIS, Adduce C, Alves E, Franca MJ (2014) Dynamics of the head of gravity currents. Environ Fluid Mech 14(2):519–540

    Article  Google Scholar 

  • Pokrajac D, Kikkert GA (2011) RADINS equations for aerated shallow water flows over rough beds. J Hydraul Res 49(5):630–638

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, New York

    Book  Google Scholar 

  • Proust S, Fernandes JN, Peltier Y, Leal JB, Riviere N, Cardoso AH (2013) Turbulent non-uniform flows in straight compound open-channels. J Hydraul Res 51(6):656–667

    Article  Google Scholar 

  • Provenzale A (1999) Transport by coherent barotropic vortices. Annu Rev Fluid Mech 31:55–93

    Article  Google Scholar 

  • Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Bound-Layer Meteorol 22:79–90

    Article  Google Scholar 

  • Ricardo AM (2014) Hydrodynamics of turbulent flows within arrays of circular cylinders. PhD thesis, EPFL, Lausanne

    Google Scholar 

  • Ricardo AM, Koll K, Franca MJ, Schleiss AJ, Ferreira RML (2014) The terms of turbulent kinetic energy budget within random arrays of emergent cylinders. Water Resour Res 50(5):4131–4148

    Article  Google Scholar 

  • Romano GP, Ouellette NZ, Xu H, Bodenschatz E, Steinberg V, Meneveau C, Katz J (2007) Measurements of turbulent flows. In: Tropea C, Yarin AL, Foss JF (eds) Springer handbook of experimental fluid mechanics. Springer, Berlin

    Google Scholar 

  • Roy AG, Buffin-Bélanger T, Lamarre H, Kirkbride AD (2004) Size, shape and dynamics of large-scale turbulent flow structures in a gravel-bed river. J Fluid Mech 500:1–247

    Article  Google Scholar 

  • Saggiori S, Rita S, Ferreira RML, Franca MJ (2012) Analysis of 3rd order moments on a natural vegetated flow. In: Proceedings of 2nd IAHR Europe congress, Munich

    Google Scholar 

  • Santos BO, Franca MJ, Ferreira RML (2014) Coherent structures in open channel flows with bed load transport over an hydraulically rough bed. In: Schleiss AJ, De Cesare G, Franca MJ, Pfister M. (eds) River flow 2014. Taylor & Francis, Leiden

    Google Scholar 

  • Schleiss AJ, De Cesare G, Franca MJ, Pfister M (eds) River flow 2014., Taylor & Francis, Leiden

    Google Scholar 

  • Séchet P, Le Guennec B (1999) The role of near wall turbulent structures on sediment transport. Water Res 33(17):3646–3656

    Article  Google Scholar 

  • Shields FD Jr, Morin N, Cooper CM (2004) Large woody debris structures for sand-bed channels. J Hydraul Eng 130(3):208–217

    Article  Google Scholar 

  • Shiono K, Muto Y (1998) Complex flow mechanisms in compound meandering channels with overbank flow. J Fluid Mech 376:221–261

    Article  Google Scholar 

  • Shiono K, Spooner J, Chan TL, Rameshwaran P, Chandler JH (2008) Flow characteristics in meandering channels with non-mobile and mobile beds for overbank flows. J Hydraul Res 46(1):113–132

    Article  Google Scholar 

  • Simpson JE (1997) Gravity currents: in the environment and the laboratory. Cambridge University Press, New York

    Google Scholar 

  • Siniscalchi F, Nikora VI, Aberle J (2012) Plant patch hydrodynamics in streams: Mean flow, turbulence, and drag forces. Water Resour Res 48(1):W01513

    Article  Google Scholar 

  • Smart GM (1999) Turbulent velocity profiles and boundary shear in gravel bed rivers. J Hydraul Eng 125(2):106–116

    Article  Google Scholar 

  • Soldati A, Marchioli C (2009) Physics and modelling of turbulent particle deposition and entrainment: review of systematic study. Int J Multip Flows 35:827–839

    Article  Google Scholar 

  • Soldini L, Piattella A, Brocchini M, Mancinelli A, Bernetti R (2004) Macrovortices-induced horizontal mixing in compound channels. Ocean Dyn 54:333–339

    Article  Google Scholar 

  • Stocchino A, Brocchini M (2010) Horizontal mixing of quasi-uniform, straight, compound channel flows. J Fluid Mech 643:425–435

    Article  Google Scholar 

  • Stocchino A, Besio G, Angiolani S, Brocchini M (2011) Lagrangian mixing in straight compound channels. J Fluid Mech 675:168–198

    Article  Google Scholar 

  • Stoesser T, Nikora V (2008) Flow structure over square bars at intermediate submergence: large eddy simulation study of bar spacing effect. Acta Geophys 56(3):876–893

    Article  Google Scholar 

  • Sukhodolova TA, Sukhodolov AN (2012) Vegetated mixing layer around a finite-size patch of submerged plants: 1. Theory and field experiments. Water Resour Res 48(10):WR011804

    Google Scholar 

  • Tanino Y, Nepf HM (2008) Laboratory investigation of mean drag in a random array of rigid, emergent cylinders. J Hydraul Eng 134(1):34–41

    Article  Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. The MIT press, Cambridge

    Google Scholar 

  • Termini D, Piraino M (2011) Experimental analysis of cross-sectional flow motion in a large amplitude meandering bend. Earth Surf Proc Land 36(2):244–256

    Article  Google Scholar 

  • Tominaga A, Nezu I (1991) Turbulent structure in compound open-channel flows. J Hydraul Eng 117(1):21–41

    Article  Google Scholar 

  • Tritico HM, Hotchkiss RH (2005) Unobstructed and obstructed turbulent flow in gravel bed rivers. J Hydraul Eng 131(8):635–645

    Article  Google Scholar 

  • Tsujimoto T (1989) Longitudinal stripes of alternate lateral sorting due to cellular secondary currents. In: Proceedings of XXX IAHR Cong, Ottawa

    Google Scholar 

  • van Prooijen BC, Uijttewaal WSJ (2002) A linear approach for the evolution of coherent structures in shallow mixing layers. Phys Fluids 14(12):4105–4114

    Article  Google Scholar 

  • van Prooijen BC, Battjes JA, Uijttewaal WSJ (2005) Momentum exchange in straight uniform compound channel flow. J Hydraul Eng 131(3):175–183

    Article  Google Scholar 

  • Willmarth WW, Lu SS (1972) Structure of the Reynolds stress near the wall. J Fluid Mech 5(1):65–92

    Article  Google Scholar 

  • Yoshida K, Nezu I (2004) Experimental study on air-water interfacial turbulent hydrodynamics and gas transfer in wind-induced open channel-flows. In: Proceedings of the 4th IAHR international symposium on environmental hydraulics, Hong Kong

    Google Scholar 

  • Zhong D, Wang G, Ding Y (2011) Bed sediment entrainment function based on kinetic theory. J Hydraul Eng 137:222–233

    Article  Google Scholar 

Download references

Acknowledgements

Mário J. Franca acknowledges the financial support by the European Fund for Economic and Regional Development (FEDER) through the Program Operational Factors of Competitiveness (COMPETE) and National Funds through the Portuguese Foundation of Science and Technology (RECI/ECM-HID/0371/2012 and PTDC/ECM/099752/2008). Maurizio Brocchini acknowledges the financial support from the EsCoSed Project, which is financed by the US-ONR through the NICOP Research Grant (N62909-13-1-N020). The PhD students Elena Battisacco, Reyhaneh S. Ghazanfari, Sebastián Guillén-Ludeña, Sebastian Schwindt and Jessica Zordan are acknowledged for their final check of possible inconsistencies in the text. The present work was completed while Maurizio Brocchini was Visiting Professor at the Laboratoire d'Hydraulique Environnementale,  ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mário J. Franca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Franca, M.J., Brocchini, M. (2015). Turbulence in Rivers. In: Rowiński, P., Radecki-Pawlik, A. (eds) Rivers – Physical, Fluvial and Environmental Processes. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-17719-9_2

Download citation

Publish with us

Policies and ethics