Skip to main content

A Novel Topology for Enhancing the Low-Voltage Ride-Through Capability for Grid Connected Wind Turbine Generators

  • Chapter
  • First Online:
Renewable Energy in the Service of Mankind Vol I
  • 1991 Accesses

Abstract

Energy shortage and environmental pollution have led to the increasing demand of using renewable sources for electricity production. Currently, power generation from wind energy systems (WES) is of global significance and will continue to grow during the coming years leading to concerns about power system stability where wind farms replace conventional generating technologies that use fossil fuels as the primary energy source. One of these concerns is low-voltage ride-through (LVRT). In this chapter, a novel topology based on the use of magnetic amplifier for enhancing the low voltage ride through capability for grid connected permanent magnet synchronous generators (PMSG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\({{C}_{p}}\) :

Performance coefficient of wind turbine

\(f\) :

Supply frequency (Hz)

\({{i}_{b}}\) :

Boost converter inductor current (A)

\({{i}_{dg}},{{i}_{qg}}\) :

dq PMSG stator current components (A)

\({{i}_{a}},{{i}_{b}},{{i}_{c}}\) :

Three phase grid currents (A)

\({{i}_{d}},{{i}_{q}}\) :

dq axis components of grid currents (A)

\({{i}_{d}}^{*},{{i}_{q}}^{*}\) :

dq reference grid current components (A)

\({{i}_{s}}\) :

PMSG supply current (A)

\({{i}_{c}}\) :

Magnetic amplifier control winding current (A)

\({{I}_{inv}}\) :

Inverter IGBT current (A)

\({{I}_{rec}}\) :

Rectifier diode current (A)

\({{L}_{f}}\) :

Booster inductance (H)

\({{L}_{d}},{{L}_{q}}\) :

PMSG dq axis inductances (H)

\({{P}_{w}}\) :

Power absorbed by windmill

\({{P}_{Grid,}}{{Q}_{Grid}}\) :

Grid active & reactive power (Watt, VAR)

\({{P}_{Gen}},{{Q}_{Gen}}\) :

PMSG active & reactive power (Watt, VAR)

\({{R}_{a}}\) :

Stator armature resistance (Ω)

R:

Windmill blade radius (m)

\({{T}_{e}}\) :

Electromagnetic torque (Nm)

V:

Wind velocity (m/sec)

\({{V}_{inv}}\) :

Inverter IGBT voltage (V)

\({{v}_{b}}\) :

Input capacitor voltage of boost converter (V)

\({{v}_{dc}}\) :

DClink capacitor voltage (V)

\({{V}_{rec}}\) :

Rectifier diodes reverse voltage (V)

\({{v}_{a}},{{v}_{b}},{{v}_{c}}\) :

Three phase grid voltages (A)

\(\beta \) :

Blade pitch angle (BPA)

\(\delta \) :

Load angle, between q-axis and phase “a” voltage, (rad)

\({{\varphi }_{f}}\) :

Permanent magnet flux linkage (Wb)

\({{\varphi }_{d}},{{\varphi }_{q}}\) :

dq axis flux-linkages (Wb)

\(\theta \) :

Phase angle of grid voltage (degree)

\(\lambda \) :

Tip-speed ratio (TSR)

\(\rho \) :

Air density

\(\omega \) :

Electrical rotor angular speed (rad/s)

References

  1. B. M. Buchholz et al (2006) Dynamic simulation of renewable energy sources and requirements on fault ride through behavior. In: Power engineering society general meeting, 2006. IEEE, p 7

    Google Scholar 

  2. Tsili M, Papathanassiou S (2009) A review of grid code technical requirements for wind farms. IET Renew Power Gener 3:308

    Article  Google Scholar 

  3. Pan CT, Juan YL (2010) A novel sensorless MPPT controller for a high-efficiency microscale wind power generation system. IEEE Trans Energy Convers 25:207–216

    Article  Google Scholar 

  4. Morimoto S et al (2005) Sensorless output maximization control for variable-speed wind generation system using IPMSG. IEEE Trans Ind Appl 41:60–67

    Article  MathSciNet  Google Scholar 

  5. Cecconi V et al (2008) Active power maximizing for wind electrical energy generating systems moved by a modular multiple blade fixed pitch wind turbine, presented at the SPEEDAM 2008 international symposium on power electronics, electrical drives, automation and motion, 2008

    Google Scholar 

  6. Strachan NPW, Jovcic D (2007) Dynamic modeling, simulation and analysis of an offshore variable-speed directly-driven permanent-magnet wind energy conversion and storage system (WECSS), presented at the OCEANS 2007–Europe 2007

    Google Scholar 

  7. Conroy JF, Watson R (2007) Low-voltage ride-through of a full converter wind turbine with permanent magnet generator. IET Renew Power Gener 1:182

    Article  Google Scholar 

  8. Zhang W et al (2008) Analysis of the by-pass resistance of an active crowbar for doubly-fed induction generator based wind turbines under grid faults, presented at the international conference on electrical machines and systems, 2008. ICEMS 2008

    Google Scholar 

  9. Ramtharan G et al (2009) Fault ride through of fully rated converter wind turbines with AC and DC transmission systems. IET Renew Power Gener 3:426

    Article  Google Scholar 

  10. Xiao-ping Y et al (2009) Low voltage ride-through of directly driven wind turbine with permanent magnet synchronous generator, presented at the power and energy engineering conference, 2009. APPEEC 2009. Asia-Pacific 2009

    Google Scholar 

  11. Ali MH, Wu B (2010) Comparison of stabilization methods for fixed-speed wind generator systems. IEEE Trans Power Deliv 25:323–331

    Article  Google Scholar 

  12. G. Wenming et al (2011) A survey on recent low voltage ride-through solutions of large scale wind farm, presented at the power and energy engineering conference (APPEEC), 2011 Asia-Pacific 2011

    Google Scholar 

  13. Abdel-Baqi O, Nasiri A (2011) Series voltage compensation for DFIG wind turbine. IEEE Trans Energy Convers 26:272–280

    Article  Google Scholar 

  14. Raphael S, Massoud A (2011) Unified power flow controller for low voltage ride through capability of wind-based renewable energy grid-connected systems, presented at the 8th international multi-conference on systems, signals & devices 2011

    Google Scholar 

  15. Koutroulis E, Kalaitzakis K (2006) Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Trans Ind Electron 53:486–494

    Google Scholar 

  16. Raza K et al (2008) A novel algorithm for fast and efficient maximum power point tracking of wind energy conversion systems. In: 18th international conference on electrical machines, 2008. ICEM 2008, pp 1–6

    Google Scholar 

  17. Buehring IK, Freris LL (1981) Control policies for wind-energy conversion systems. IEE Proc Gener Transm Distrib 128:253–261

    Google Scholar 

  18. Adam M et al (2007) Architecture complexity and energy efficiency of small wind turbines. IEEE Trans Ind Electron 54:660–670

    Article  Google Scholar 

  19. Tan K, Islam S (2004) Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors. Energy Convers IEEE Trans 19:392–399

    Article  Google Scholar 

  20. Ching-Tsai P, Yu-Ling J (2010) A novel sensorless MPPT controller for a high-efficiency microscale wind power generation system. IEEE Trans Energy Convers 25:207–216

    Article  Google Scholar 

  21. Geng H et al (2011) Unified power control for PMSG-based WECS operating under different grid conditions. IEEE Trans Energy Convers 26:822–830

    Article  Google Scholar 

  22. Chen Z et al (2009) A review of the state of the art of power electronics for wind turbines. IEEE Trans Power Electron 24:1859–1875

    Article  Google Scholar 

  23. Krause PC et al (2002) Analysis of electric machinery and drive systems. Wiely, New York City

    Book  Google Scholar 

  24. Lufcy CW (1955) A survey of magnetic amplifiers. Proceedings of the IRE 404–413

    Google Scholar 

  25. Feinberg R (1950) A review of transductor principles and applications. Power Eng Proc IEE Part II 97:628–644

    Google Scholar 

  26. Hudson CS (1950) A theory of the series transductor. Power Eng Proc IEE Part II 97:751–755

    Google Scholar 

  27. Parton KC et al (1981) Superconducting power-system transductor. IEE Proc Gener Transm Distrib 128:235–242

    Google Scholar 

  28. Lamm AU (1947) Some fundamentals of a theory of the transductor or magnetic amplifier. ATEE Trans 66:1078–1085

    Google Scholar 

  29. Shindo Y et al (2011) A magnetic amplifier using nanocrystalline soft magnetic material, presented at the 8th international conference on power electronics—ECCE Asia, May 30–June 3, 2011

    Google Scholar 

  30. Smith EHF (1966) The theory and design of magnetic amplifiers. Chapman and Hall, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Dessouky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ibrahim, R., Hamad, M., Dessouky, Y., Williams, B. (2015). A Novel Topology for Enhancing the Low-Voltage Ride-Through Capability for Grid Connected Wind Turbine Generators. In: Sayigh, A. (eds) Renewable Energy in the Service of Mankind Vol I. Springer, Cham. https://doi.org/10.1007/978-3-319-17777-9_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17777-9_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17776-2

  • Online ISBN: 978-3-319-17777-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics