Skip to main content

Modeling of Tumor Control Probability (TCP)

  • Chapter
Machine Learning in Radiation Oncology

Abstract

Modeling of tumor control probability is an important task for predicting response in radiotherapy. Most early methods have focused on using biophysical analysis based on understanding irradiation effects from in vitro cell culture. However, it has been recognized that clinical tumor response is multifactorial and involves a complex interaction of physical, biological, and clinical surrogates that data-driven approaches such as machine-learning algorithms would play a prominent role. In this chapter, we present using different examples the process of applying machine learning to modeling TCP and demonstrate its efficacy compared to existing methods and its potential to improving our understanding of tumor response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer D, editors. Image-guided IMRT. Berlin: Springer; 2006.

    Google Scholar 

  2. Webb S. The physics of three-dimensional radiation therapy: conformal radiotherapy, radiosurgery, and treatment planning. Bristol/Philadelphia: Institute of Physics Pub; 2001.

    Google Scholar 

  3. Halperin EC, Perez CA, Brady LW. Perez and Brady’s principles and practice of radiation oncology. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  4. Moissenko V, Deasy JO, Van Dyk J. Radiobiological modeling for treatment planning. In: Van Dyk J, editor. The modern technology of radiation oncology: a compendium for medical physicists and radiation oncologists. Madison: Medical Physics Publishing; 2005. p. 185–220.

    Google Scholar 

  5. Choi N, Baumann M, Flentjie M, Kellokumpu-Lehtinen P, Senan S, Zamboglou N, et al. Predictive factors in radiotherapy for non-small cell lung cancer: present status. Lung Cancer. 2001;31:43–56.

    Article  CAS  PubMed  Google Scholar 

  6. Fu XL, Zhu XZ, Shi DR, Xiu LZ, Wang LJ, Zhao S, et al. Study of prognostic predictors for non-small cell lung cancer. Lung Cancer. 1999;23:143–52.

    Article  CAS  PubMed  Google Scholar 

  7. Blanco AI, Chao KS, El Naqa I, Franklin GE, Zakarian K, Vicic M, et al. Dose-volume modeling of salivary function in patients with head-and-neck cancer receiving radiotherapy. Int J Radiat Oncol Biol Phys. 2005;62:1055–69.

    Article  PubMed  Google Scholar 

  8. Bradley J, Deasy JO, Bentzen S, El-Naqa I. Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma. Int J Radiat Oncol Biol Phys. 2004;58:1106–13.

    Article  PubMed  Google Scholar 

  9. Marks LB. Dosimetric predictors of radiation-induced lung injury. Int J Radiat Oncol Biol Phys. 2002;54:313–6.

    Article  PubMed  Google Scholar 

  10. Hope AJ, Lindsay PE, El Naqa I, Bradley JD, Vicic M, Deasy JO. Clinical, dosimetric, and location-related factors to predict local control in non-small cell lung cancer. ASTRO 47th annual meeting. Denver; 2005. p. S231.

    Google Scholar 

  11. Tucker SL, Cheung R, Dong L, Liu HH, Thames HD, Huang EH, et al. Dose-volume response analyses of late rectal bleeding after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2004;59:353–65.

    Article  PubMed  Google Scholar 

  12. El Naqa I, Bradley JD, Lindsay PE, Blanco AI, Vicic M, Hope AJ, et al. Multi-variable modeling of radiotherapy outcomes including dose-volume and clinical factors. Int J Radiat Oncol Biol Phys. 2006;64:1275–86.

    Article  PubMed  Google Scholar 

  13. Deasy JO, El Naqa I. Image-based modeling of normal tissue complication probability for radiation therapy. Cancer Treat Res. 2008;139:215–56.

    PubMed  Google Scholar 

  14. Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, et al. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76:S3–9. doi:10.1016/j.ijrobp.2009.09.040. S0360-3016(09)03300-8 [pii].

    Article  PubMed Central  PubMed  Google Scholar 

  15. Jackson A, Marks LB, Bentzen SM, Eisbruch A, Yorke ED, Ten Haken RK, et al. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010;76:S155–60. doi:10.1016/j.ijrobp.2009.08.074. S0360-3016(09)03299-4 [pii].

    Article  PubMed Central  PubMed  Google Scholar 

  16. El Naqa I. Machine learning methods for predicting tumor response in lung cancer. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2012;2:173–81. doi:10.1002/widm.1047.

    Google Scholar 

  17. Munro TR, Gilbert CW. The relation between tumour lethal doses and the radiosensitivity of tumour cells. Br J Radiol. 1961;34:246–51. doi:10.1259/0007-1285-34-400-246.

    Article  CAS  PubMed  Google Scholar 

  18. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  19. Joiner M, Kogel A. Basic clinical radiobiology. 4th ed. London: Hodder Arnold; 2009.

    Google Scholar 

  20. Goitein M. Tumor control probability for an inhomogeneously irradiated target volume. In: Zink S, editor. Evaluation of treatment planning for particle beam radiotherapy. Bethesda: National Cancer Institute; 1987.

    Google Scholar 

  21. Zaider M, Minerbo GN. Tumour control probability: a formulation applicable to any temporal protocol of dose delivery. Phys Med Biol. 2000;45:279–93.

    Article  CAS  PubMed  Google Scholar 

  22. Hall EJ. Radiobiology for the radiologist. 4th ed. Philadelphia: J.B. Lippincott; 1994.

    Google Scholar 

  23. Zaider M, Hanin L. Tumor control probability in radiation treatment. Med Phys. 2011;38:574–83.

    Article  PubMed  Google Scholar 

  24. Lindsay PE, El Naqa I, Hope AJ, Vicic M, Cui J, Bradley JD, et al. Retrospective monte carlo dose calculations with limited beam weight information. Med Phys. 2007;34:334–46.

    Article  PubMed  Google Scholar 

  25. Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Med Phys. 2003;30:979–85.

    Article  PubMed  Google Scholar 

  26. El Naqa I, Deasy J, Mu Y, Huang E, Hope A, Lindsay P, et al. Datamining approaches for modeling tumor control probability. Acta Oncol. 2010;49(8):1363–73.

    Article  PubMed  Google Scholar 

  27. Kennedy R, Lee Y, Van Roy B, Reed CD, Lippman RP. Solving data mining problems through pattern recognition. Upper Saddle River, NJ, London: Prentice Hall; 1998.

    Google Scholar 

  28. Willner J, Baier K, Caragiani E, Tschammler A, Flentje M. Dose, volume, and tumor control prediction in primary radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2002;52:382–9.

    Article  PubMed  Google Scholar 

  29. Martel MK, Ten Haken RK, Hazuka MB, Kessler ML, Strawderman M, Turrisi AT, et al. Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients. Lung Cancer. 1999;24:31–7.

    Article  CAS  PubMed  Google Scholar 

  30. Mehta M, Scrimger R, Mackie R, Paliwal B, Chappell R, Fowler J. A new approach to dose escalation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2001;49:23–33. doi:S0360-3016(00)01374-2 [pii].

    Article  CAS  PubMed  Google Scholar 

  31. Brodin O, Lennartsson L, Nilsson S. Single-dose and fractionated irradiation of four human lung cancer cell lines in vitro. Acta Oncol. 1991;30:967–74.

    Article  CAS  PubMed  Google Scholar 

  32. Seibert RM, Ramsey CR, Hines JW, Kupelian PA, Langen KM, Meeks SL, et al. A model for predicting lung cancer response to therapy. Int J Radiat Oncol Biol Phys. 2007;67:601–9.

    Article  PubMed  Google Scholar 

  33. Ramsey CR, Langen KM, Kupelian PA, Scaperoth DD, Meeks SL, Mahan SL, et al. A technique for adaptive image-guided helical tomotherapy for lung cancer. Int J Radiat Oncol Biol Phys. 2006;64:1237–44.

    Article  PubMed  Google Scholar 

  34. Borst GR, Belderbos JS, Boellaard R, Comans EF, De Jaeger K, Lammertsma AA, et al. Standardised FDG uptake: a prognostic factor for inoperable non-small cell lung cancer. Eur J Cancer. 2005;41:1533–41.

    Article  PubMed  Google Scholar 

  35. Levine EA, Farmer MR, Clark P, Mishra G, Ho C, Geisinger KR, et al. Predictive value of 18-fluoro-deoxy-glucose-positron emission tomography (18F-FDG-PET) in the identification of responders to chemoradiation therapy for the treatment of locally advanced esophageal cancer. Ann Surg. 2006;243:472–8.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med. 2009;50:88–99. doi:10.2967/jnumed.108.054205.

    Article  PubMed  Google Scholar 

  37. El Naqa I, Grigsby PW, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009;42:1162–71.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Mac Manus MP, Hicks RJ, Matthews JP, Wirth A, Rischin D, Ball DL. Metabolic (FDG-PET) response after radical radiotherapy/chemoradiotherapy for non-small cell lung cancer correlates with patterns of failure. Lung Cancer. 2005;49:95–108. doi:10.1016/j.lungcan.2004.11.024. S0169-5002(04)00625-7 [pii].

    Article  PubMed  Google Scholar 

  39. Yamamoto Y, Nishiyama Y, Monden T, Sasakawa Y, Ohkawa M, Gotoh M, et al. Correlation of FDG-PET findings with histopathology in the assessment of response to induction chemoradiotherapy in non-small cell lung cancer. Eur J Nucl Med Mol Imaging. 2006;33:140–7.

    Article  PubMed  Google Scholar 

  40. Pieterman RM, van Putten JW, Meuzelaar JJ, Mooyaart EL, Vaalburg W, Koeter GH, et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med. 2000;343:254–61.

    Article  CAS  PubMed  Google Scholar 

  41. Wong CY, Schmidt J, Bong JS, Chundru S, Kestin L, Yan D, et al. Correlating metabolic and anatomic responses of primary lung cancers to radiotherapy by combined F-18 FDG PET-CT imaging. Radiat Oncol. 2007;2:18. doi:10.1186/1748-717X-2-18. 1748-717X-2-18 [pii].

    Article  PubMed Central  PubMed  Google Scholar 

  42. Vaidya M, Creach KM, Frye J, Dehdashti F, Bradley JD, El Naqa I. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol. 2012;102:239–45. doi:10.1016/j.radonc.2011.10.014. S0167-8140(11)00626-8 [pii].

    Article  PubMed  Google Scholar 

  43. Group BDW. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95. doi:10.1067/mcp.2001.113989. S0009-9236(01)63448-9 [pii].

    Article  Google Scholar 

  44. Le Q-T, Chen E, Salim A, Cao H, Kong CS, Whyte R, et al. An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res. 2006;12:1507–14. doi:10.1158/1078-0432.ccr-05-2049.

    Article  CAS  PubMed  Google Scholar 

  45. Rube CE, Palm J, Erren M, Fleckenstein J, KÃnig J, Remberger K, et al. Cytokine plasma levels: reliable predictors for radiation pneumonitis? PLoS One. 2008;3:e2898.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Oh JH, Craft J, Al Lozi R, Vaidya M, Meng Y, Deasy JO, et al. A Bayesian network approach for modeling local failure in lung cancer. Phys Med Biol. 2011;56:1635–51. doi:10.1088/0031-9155/56/6/008. S0031-9155(11)60164-4 [pii].

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam El Naqa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

El Naqa, I. (2015). Modeling of Tumor Control Probability (TCP). In: El Naqa, I., Li, R., Murphy, M. (eds) Machine Learning in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-18305-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18305-3_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18304-6

  • Online ISBN: 978-3-319-18305-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics