Skip to main content

Gradient Projection for Regularized Cryo-Electron Tomographic Reconstruction

  • Chapter
  • First Online:
Computational Methods for Molecular Imaging

Abstract

Cryo-ET has recently emerged as a leading technique to investigate the three-dimensional (3D) structure of biological specimens at close-to-native state. The technique consists of acquiring many two-dimensional (2D) projections of the structure under scrutiny at various tilt angles under cryogenic conditions. The 3D structure is recovered through a number of steps including projection alignment and reconstruction. However, the resolution currently achieved by cryo-ET is well below the instrumental resolution mainly due to the contrast transfer function of the microscope, the limited tilt range and the high noise power. These limitations make the 3D reconstruction procedure very challenging. Here, we propose a new regularized reconstruction technique based on projected gradient algorithm. Using the gold-standard method for resolution assessment, the Fourier Shell Correlation, we show that the proposed technique outperforms the commonly used reconstruction methods in ET, including the filtered back projection and the algebraic reconstruction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McEwen, B.F., Marko, M.: The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. 49(5), 553–563 (2001)

    Article  Google Scholar 

  2. Frank, J.: Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell. Springer, New York (2006)

    Book  Google Scholar 

  3. Diebolder, C.A., et al.: Pushing the resolution limits in cryo electron tomography of biological structures. J. Microsc. 248(1), 1–5 (2012)

    Article  Google Scholar 

  4. Chen, Y., Förster, F.: Iterative reconstruction of cryo-electron tomograms using nonuniform fast Fourier transforms. J. Struct. Biol. (2013)

    Google Scholar 

  5. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Saechsischen Akad. der Wissenschaften zu Leipzig, Math. Naturwissenschaftliche Klasse. 69, 262–277 (1917)

    Google Scholar 

  6. Wan, X. et al.: Modified simultaneous algebraic reconstruction technique and its parallelization in cryo-electron tomography. In: 15th International Conference on Parallel and Distributed Systems (ICPADS), pp. 384–390. IEEE (2009)

    Google Scholar 

  7. Qian, Z., et al.: Improving SIRT algorithm for computerized tomographic image reconstruction. Recent Advances in Computer Science and Information Engineering, pp. 523–528. Springer, Berlin (2012)

    Google Scholar 

  8. Wolf, D., et al.: Weighted simultaneous iterative reconstruction technique for single-axis tomography. Ultramicroscopy 136, 15–25 (2014)

    Article  Google Scholar 

  9. Calamai, P., Moré, J.: Projected gradient methods for linearly constrained problems. Math. Program. 39(1), 93–116 (1987)

    Article  MATH  Google Scholar 

  10. Figueiredo, M.A.T., et al.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  MathSciNet  Google Scholar 

  11. Jørgensen, J.H. et al.: Accelerated gradient methods for total-variation-based CT image reconstruction (2011). arXiv:1105.4002v1

  12. Harmany, Z. et al.: Gradient projection for linearly constrained convex optimization in sparse signal recovery. In: 17th IEEE International Conference on Image Processing (ICIP), pp. 3361–3364 (2010)

    Google Scholar 

  13. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8(1), 43–71 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Huber, P.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)

    Article  MATH  Google Scholar 

  15. Armijo, L.: Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 16(1), 1–3 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hansen, P.C., Saxild-Hansen, M.: AIR tools-a MATLAB package of algebraic iterative reconstruction methods. J. Comput. Appl. Math. 236(8), 216–2178 (2012)

    Article  MathSciNet  Google Scholar 

  17. Gong, P. et al.: A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems (2013). arXiv Prepr. arXiv1303.4434

  18. Dumoux, M., et al.: Chlamydiae assemble a pathogen synapse to hijack the host endoplasmic reticulum. Traffic 13(12), 1612–1627 (2012)

    Article  Google Scholar 

  19. Penczek, P.A.: Resolution measures in molecular electron microscopy, in Methods in Enzymology, pp. 73–100 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Albarqouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Albarqouni, S., Lasser, T., Alkhaldi, W., Al-Amoudi, A., Navab, N. (2015). Gradient Projection for Regularized Cryo-Electron Tomographic Reconstruction. In: Gao, F., Shi, K., Li, S. (eds) Computational Methods for Molecular Imaging. Lecture Notes in Computational Vision and Biomechanics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-18431-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18431-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18430-2

  • Online ISBN: 978-3-319-18431-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics