Skip to main content

Designing Antibacterial Surfaces for Biomedical Implants

  • Chapter
Antibacterial Surfaces

Abstract

The infection of biomaterials, particularly medical implants, represents a significant challenge during surgical implantation processes and the subsequent recovery period for the recipient of the implant.

Infections arising from such surgical procedures not only adversely affect the well-being of the patient; they also place a significant burden on the healthcare systems of many countries around the world. A great deal of effort has been made in attempts to minimise or prevent pathogenic bacteria from contaminating these biomaterials. These efforts have included the development of techniques for rendering the surfaces anti-fouling through chemical modification or functionalization of the surface. Recent focus, however, has been placed on the production of antibacterial surfaces. Developments in the area of nanofabrication have allowed the chemical and physical characteristics of the surface of implant materials to be modified such that the molecular to micro-scale topological features can now be accurately controlled.

This chapter will provide an overview of the current approaches and techniques being used or are being developed in the design of antibacterial metallic implant surfaces. Such surfaces can be subjected to a number of chemical and physical modification techniques to achieve this aim, with the resulting surfaces being found to not only exhibit antibacterial behaviour, but also biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andani MT, Shayesteh Moghaddam N, Haberland C, Dean D, Miller MJ, Elahinia M (2014) Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater 10(10):4058–4070. doi:10.1016/j.actbio.2014.06.025

    CAS  PubMed  Google Scholar 

  • Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6(10):3824–3846. doi:10.1016/j.actbio.2010.04.001

    CAS  PubMed  Google Scholar 

  • Antoci V, King SB, Jose B, Parvizi J, Zeiger AR, Wickstrom E, Freeman TA, Composto RJ, Ducheyne P, Shapiro IM (2007) Vancomycin covalently bonded to titanium alloy prevents bacterial colonization. J Orthop Res 25(7):858–866. doi:10.1002/jor.20348

    CAS  PubMed  Google Scholar 

  • Arciola CR, Radin L, Alvergna P, Cenni E, Pizzoferrato A (1993) Heparin surface treatment of poly(methylmethacrylate) alters adhesion of a Staphylococcus aureus strain: utility of bacterial fatty acid analysis. Biomaterials 14(15):1161–1164. doi:10.1016/0142-9612(93)90161-T

    CAS  PubMed  Google Scholar 

  • Arciola CR, Bustanji Y, Conti M, Campoccia D, Baldassarri L, Samorì B, Montanaro L (2003) Staphylococcus epidermidis-fibronectin binding and its inhibition by heparin. Biomaterials 24(18):3013–3019. doi:10.1016/S0142-9612(03)00133-9

    CAS  PubMed  Google Scholar 

  • Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW (2012) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33(26):5967–5982. doi:10.1016/j.biomaterials.2012.05.031

    CAS  PubMed  Google Scholar 

  • Aslan S, Deneufchatel M, Hashmi S, Li N, Pfefferle LD, Elimelech M, Pauthe E, Van Tassel PR (2012) Carbon nanotube-based antimicrobial biomaterials formed via layer-by-layer assembly with polypeptides. J Colloid Interface Sci 388(1):268–273. doi:10.1016/j.jcis.2012.08.025

    CAS  PubMed  Google Scholar 

  • Aslan S, Määttä J, Haznedaroglu BZ, Goodman JP, Pfefferle LD, Elimelech M, Pauthe E, Sammalkorpi M, Van Tassel PR (2013) Carbon nanotube bundling: influence on layer-by-layer assembly and antimicrobial activity. Soft Matter 9(7):2136–2144. doi:10.1002/adma.201001215

    CAS  Google Scholar 

  • Bayston R, Vera L, Mills A, Ashraf W, Stevenson O, Howdle SM (2010) In vitro antimicrobial activity of silver-processed catheters for neurosurgery. J Antimicrob Chemother 65(2):258–265. doi:10.1093/jac/dkp420

    CAS  PubMed  Google Scholar 

  • Bazaka K, Jacob MV, Truong VK, Wang F, Pushpamali WAA, Wang JY, Ellis AV, Berndt CC, Crawford RJ, Ivanova EP (2010) Plasma-enhanced synthesis of bioactive polymeric coatings from monoterpene alcohols: a combined experimental and theoretical study. Biomacromolecules 11(8):2016–2026. doi:10.1021/bm100369n

    CAS  PubMed  Google Scholar 

  • Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011a) Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater 7(5):2015–2028. doi:10.1016/j.actbio.2010.12.024

    CAS  PubMed  Google Scholar 

  • Bazaka K, Jacob MV, Truong VK, Crawford RJ, Ivanova EP (2011b) The effect of polyterpenol thin film surfaces on bacterial viability and adhesion. Polymer 3(1):388–404. doi:10.3390/polym3010388

    CAS  Google Scholar 

  • Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2012) Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol 95(2):299–311. doi:10.1007/s00253-012-4144-7

    CAS  PubMed  Google Scholar 

  • Bozic KJ, Ries MD (2005) The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization. J Bone Joint Surg Ser A 87(8):1746–1751. doi:10.2106/JBJS.D.02937

    Google Scholar 

  • Brouwer CPJM, Rahman M, Welling MM (2011) Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides 32(9):1953–1963. doi:10.1016/j.peptides.2011.07.017

    CAS  PubMed  Google Scholar 

  • Busscher HJ, Van Der Mei HC, Subbiahdoss G, Jutte PC, Van Den Dungen JJAM, Zaat SAJ, Schultz MJ, Grainger DW (2012) Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med 4(153):153rv110. doi:10.1126/scitranslmed.3004528

    Google Scholar 

  • Bustanji Y, Arciola CR, Conti M, Mandello E, Montanaro L, Samorí B (2003) Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force. Proc Natl Acad Sci U S A 100(23):13292–13297. doi:10.1073/pnas.1735343100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Çalışkan N, Bayram C, Erdal E, Karahaliloğlu Z, Denkbaş EB (2014) Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mater Sci Eng C 35:100–105. doi:10.1016/j.msec.2013.10.033

    Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2013a) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554. doi:10.1016/j.biomaterials.2013.07.089

    CAS  PubMed  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2013b) A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials 34(33):8018–8029. doi:10.1016/j.biomaterials.2013.07.048

    CAS  PubMed  Google Scholar 

  • Chang Y-Y, Huang H-L, Chen Y-C, Weng J-C, Lai C-H (2013) Characterization and antibacterial performance of ZrNO–Ag coatings. Surf Coat Technol 231:224–228. doi:10.1016/j.surfcoat.2012.05.084

    CAS  Google Scholar 

  • Chen X, Sevilla P, Aparicio C (2013) Surface biofunctionalization by covalent co-immobilization of oligopeptides. Colloids Surf B: Biointerfaces 107:189–197. doi:10.1016/j.colsurfb.2013.02.005

    CAS  PubMed  Google Scholar 

  • Chennell P, Feschet-Chassot E, Devers T, Awitor KO, Descamps S, Sautou V (2013) In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. Int J Pharm 455(1–2):298–305. doi:10.1016/j.ijpharm.2013.07.014

    CAS  PubMed  Google Scholar 

  • Chua PH, Neoh KG, Kang ET, Wang W (2008) Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 29(10):1412–1421. doi:10.1016/j.biomaterials.2007.12.019

    CAS  PubMed  Google Scholar 

  • Chun MJ, Shim E, Kho EH, Park KJ, Jung J, Kim JM, Kim B, Lee KH, Cho DL, Bai DH, Lee SI, Hwang HS, Ohk SH (2007) Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Angle Orthod 77(3):483–488. doi:10.2319/0003-3219(2007)077[0483:SMOOWW]2.0.CO;2

    PubMed  Google Scholar 

  • Cipriano AF, Miller C, Liu H (2014) Anodic growth and biomedical applications of TiO2 nanotubes. J Biomed Nanotechnol 10(10):2977–3003. doi:10.1166/jbn.2014.1927

    CAS  PubMed  Google Scholar 

  • Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP (2012) Surface topographical factors influencing bacterial attachment. Adv Colloid Interf Sci 179–182:142–149. doi:10.1016/j.cis.2012.06.015

    Google Scholar 

  • Crick CR, Ismail S, Pratten J, Parkin IP (2011) An investigation into bacterial attachment to an elastomeric superhydrophobic surface prepared via aerosol assisted deposition. Thin Solid Films 519(11):3722–3727. doi:10.1016/j.tsf.2011.01.282

    CAS  Google Scholar 

  • Cui FZ, Luo ZS (1999) Biomaterials modification by ion-beam processing. Surf Coat Technol 112(1–3):278–285. doi:10.1016/S0257-8972(98)00763-4

    CAS  Google Scholar 

  • Cui C, Gao X, Qi Y, Liu S, Sun J (2012a) Microstructure and antibacterial property of in situ TiO2 nanotube layers/titanium biocomposites. J Mech Behav Biomed Mater 8:178–183. doi:10.1016/j.jmbbm.2012.01.004

    CAS  PubMed  Google Scholar 

  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012b) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33(7):2327–2333. doi:10.1016/j.biomaterials.2011.11.057

    CAS  PubMed  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B: Biointerfaces 79(1):5–18. doi:10.1016/j.colsurfb.2010.03.029

    CAS  PubMed  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122. doi:10.1038/nrd1008

    CAS  PubMed  Google Scholar 

  • De Villiers MM, Otto DP, Strydom SJ, Lvov YM (2011) Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv Drug Deliv Rev 63(9):701–715. doi:10.1016/j.addr.2011.05.011

    PubMed  Google Scholar 

  • Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237. doi:10.1126/science.277.5330.1232

    CAS  Google Scholar 

  • Dong Y, Li X, Tian L, Bell T, Sammons R, Dong H (2011) Towards long-lasting antibacterial stainless steel surfaces by combining double glow plasma silvering with active screen plasma nitriding. Acta Biomater 7(1):447–457. doi:10.1016/j.actbio.2010.08.009

    CAS  PubMed  Google Scholar 

  • Dueland R, Spadaro JA, Rahn BA (1982) Silver antibacterial bone cement. Comparison with gentamicin in experimental osteomyelitis. Clin Orthop Relat Res 169:264–268

    CAS  PubMed  Google Scholar 

  • Elnathan R, Kwiat M, Patolsky F, Voelcker NH (2014) Engineering vertically aligned semiconductor nanowire arrays for applications in the life sciences. Nano Today 9(2):172–196. doi:10.1016/j.nantod.2014.04.001

    CAS  Google Scholar 

  • Fadeeva E, Truong VK, Stiesch M, Chichkov BN, Crawford RJ, Wang J, Ivanova EP (2011) Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation. Langmuir 27(6):3012–3019. doi:10.1021/la104607g

    CAS  PubMed  Google Scholar 

  • Foster TJ, Höök M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6(12):484–488. doi:10.1016/S0966-842X(98)01400-0

    CAS  PubMed  Google Scholar 

  • Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12(1):49–62. doi:10.1038/nrmicro3161

    CAS  PubMed  Google Scholar 

  • Fox S, Wilkinson TS, Wheatley PS, Xiao B, Morris RE, Sutherland A, Simpson AJ, Barlow PG, Butler AR, Megson IL, Rossi AG (2010) NO-loaded Zn2+-exchanged zeolite materials: a potential bifunctional anti-bacterial strategy. Acta Biomater 6(4):1515–1521. doi:10.1016/j.actbio.2009.10.038

    CAS  PubMed  Google Scholar 

  • Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21(1):94–104. doi:10.1039/b302231p

    CAS  PubMed  Google Scholar 

  • Fusetani N (2011) Antifouling marine natural products. Nat Prod Rep 28(2):400–410. doi:10.1039/c0np00034e

    CAS  PubMed  Google Scholar 

  • Gabriel M, Nazmi K, Veerman EC, Amerongen AVN, Zentner A (2006) Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjug Chem 17(2):548–550. doi:10.1021/bc050091v

    CAS  PubMed  Google Scholar 

  • Gadenne V, Lebrun L, Jouenne T, Thebault P (2013) Antiadhesive activity of ulvan polysaccharides covalently immobilized onto titanium surface. Colloids Surf B: Biointerfaces 112(0):229–236. doi:10.1016/j.colsurfb.2013.07.061

    CAS  PubMed  Google Scholar 

  • Gerberich BG, Bhatia SK (2013) Tissue scaffold surface patterning for clinical applications. Biotechnol J 8(1):73–84. doi:10.1002/biot.201200131

    CAS  PubMed  Google Scholar 

  • Glinel K, Thebault P, Humblot V, Pradier C-M, Jouenne T (2012) Antibacterial surfaces developed from bio-inspired approaches. Acta Biomater 8(5):1670–1684. doi:10.1016/j.actbio.2012.01.011

    CAS  PubMed  Google Scholar 

  • Godoy-Gallardo M, Mas-Moruno C, Fernández-Calderón MC, Pérez-Giraldo C, Manero JM, Albericio F, Gil FJ, Rodríguez D (2014) Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bacterial adhesion and biofilm formation. Acta Biomater 10(8):3522–3534. doi:10.1016/j.actbio.2014.03.026

    CAS  PubMed  Google Scholar 

  • Gong SQ, Niu LN, Kemp LK, Yiu CKY, Ryou H, Qi YP, Blizzard JD, Nikonov S, Brackett MG, Messer RLW, Wu CD, Mao J, Bryan Brister L, Rueggeberg FA, Arola DD, Pashley DH, Tay FR (2012) Quaternary ammonium silane-functionalized, methacrylate resin composition with antimicrobial activities and self-repair potential. Acta Biomater 8(9):3270–3282. doi:10.1016/j.actbio.2012.05.031

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon O, Slenters TV, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, Landmann R, Fromm KM (2010) Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 54(10):4208–4218. doi:10.1128/AAC.01830-09

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grinthal A, Aizenberg J (2014) Mobile interfaces: liquids as a perfect structural material for multifunctional, antifouling surfaces. Chem Mater 26(1):698–708. doi:10.1021/cm402364d

    CAS  Google Scholar 

  • Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237(4822):1588–1595. doi:10.1126/science.3629258

    CAS  PubMed  Google Scholar 

  • Gristina AG, Naylor P, Myrvik Q (1988) Infections from biomaterials and implants: a race for the surface. Med Prog Technol 14(3–4):205–224

    PubMed  Google Scholar 

  • Hajipour MJ, Fromm KM, Akbar Ashkarran A, Jimenez de Aberasturi D, Larramendi IRD, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30(10):499–511. doi:10.1016/j.tibtech.2012.06.004

    CAS  PubMed  Google Scholar 

  • Hammond PT (1999) Recent explorations in electrostatic multilayer thin film assembly. Curr Opin Colloid Interface Sci 4(6):430–442. doi:10.1016/S1359-0294(00)00022-4

    CAS  Google Scholar 

  • Hammond PT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater 16(15):1271–1293. doi:10.1002/adma.200400760

    CAS  Google Scholar 

  • Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted- poly(ethylene glycol) copolymers. Biomaterials 25(18):4135–4148. doi:10.1016/j.biomaterials.2003.11.033

    CAS  PubMed  Google Scholar 

  • Hasan J, Crawford RJ, Ivanova EP (2013) Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol 31(5):295–304. doi:10.1016/j.tibtech.2013.01.017

    CAS  PubMed  Google Scholar 

  • Hauck CR, Agerer F, Muenzner P, Schmitter T (2006) Cellular adhesion molecules as targets for bacterial infection. Eur J Cell Biol 85(3–4):235–242. doi:10.1016/j.ejcb.2005.08.002

    CAS  PubMed  Google Scholar 

  • Hebeish A, Abdelhady M, Youssef A (2013) TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile. Carbohydr Polym 91(2):549–559. doi:10.1016/j.carbpol.2012.08.068

    CAS  PubMed  Google Scholar 

  • Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G, Gollwitzer H (2005) A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. J Mater Sci Mater Med 16(10):883–888. doi:10.1007/s10856-005-4422-3

    CAS  PubMed  Google Scholar 

  • Hempel F, Finke B, Zietz C, Bader R, Weltmann K-D, Polak M (2014) Antimicrobial surface modification of titanium substrates by means of plasma immersion ion implantation and deposition of copper. Surf Coat Technol. doi:10.1016/j.surfcoat.2014.01.027

    Google Scholar 

  • Hoene A, Prinz C, Walschus U, Lucke S, Patrzyk M, Wilhelm L, Neumann HG, Schlosser M (2013) In vivo evaluation of copper release and acute local tissue reactions after implantation of copper-coated titanium implants in rats. Biomed Mater 8(3):035009. doi:10.1088/1748-6041/8/3/035009

    PubMed  Google Scholar 

  • Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332. doi:10.1016/j.ijantimicag.2009.12.011

    PubMed  Google Scholar 

  • Holmberg KV, Abdolhosseini M, Li Y, Chen X, Gorr SU, Aparicio C (2013) Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater 9(9):8224–8231. doi:10.1016/j.actbio.2013.06.017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu X, Neoh KG, Shi Z, Kang ET, Poh C, Wang W (2010) An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. Biomaterials 31(34):8854–8863. doi:10.1016/j.biomaterials.2010.08.006

    CAS  PubMed  Google Scholar 

  • Huo K, Zhang X, Wang H, Zhao L, Liu X, Chu PK (2013) Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 34(13):3467–3478. doi:10.1016/j.biomaterials.2013.01.071

    CAS  PubMed  Google Scholar 

  • Ip M, Lui SL, Poon VK, Lung I, Burd A (2006) Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55(1):59–63. doi:10.1099/jmm.0.46124-0

    CAS  PubMed  Google Scholar 

  • Ivanova EP, Hasan J, Truong VK, Wang JY, Raveggi M, Fluke C, Crawford RJ (2011) The influence of nanoscopically thin silver films on bacterial viability and attachment. Appl Microbiol Biotechnol 91(4):1149–1157. doi:10.1007/s00253-011-3195-5

    CAS  PubMed  Google Scholar 

  • Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Baulin VA, Pogodin S, Wang JY, Tobin MJ, Löbbe C, Crawford RJ (2012) Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 8(16):2489–2494. doi:10.1002/smll.201200528

    CAS  PubMed  Google Scholar 

  • Ivanova EP, Hasan J, Webb HK, Gervinskas G, Juodkazis S, Truong VK, Wu AHF, Lamb RN, Baulin VA, Watson GS, Watson JA, Mainwaring DE, Crawford RJ (2013) Bactericidal activity of black silicon. Nat Commun 4:2838. doi:10.1038/ncomms3838

    PubMed Central  PubMed  Google Scholar 

  • Jahed Z, Molladavoodi S, Seo BB, Gorbet M, Tsui TY, Mofrad MRK (2014) Cell responses to metallic nanostructure arrays with complex geometries. Biomaterials 35(34):9363–9371. doi:10.1016/j.biomaterials.2014.07.022

    CAS  PubMed  Google Scholar 

  • Jeon H, Simon CG, Kim G (2014) A mini‐review: cell response to microscale, nanoscale, and hierarchical patterning of surface structure. J Biomed Mater Res B Appl Biomater 102(7):1580–1594

    PubMed  Google Scholar 

  • Joo Y-K, Zhang S-H, Yoon J-H, Cho T-Y (2009) Optimization of the adhesion strength of arc ion plating TiAlN films by the Taguchi method. Materials 2(2):699–709. doi:10.3390/ma2020699

    CAS  Google Scholar 

  • Kang B-M, Lim Y-S (2014) Antibacterial properties of TiAgN and ZrAgN thin film coated by physical vapor deposition for medical applications. Trans Electr Electron Mater 15(5):275–278. doi:10.4313/TEEM.2014.15.5.275

    Google Scholar 

  • Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K (2000) Antibacterial silver-containing silica glass prepared by sol-gel method. Biomaterials 21(4):393–398. doi:10.1016/S0142-9612(99)00201-X

    CAS  PubMed  Google Scholar 

  • Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P (2007) Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 129(23):7228–7229. doi:10.1021/ja071456k

    CAS  PubMed  Google Scholar 

  • Lambris JD, Ricklin D, Geisbrecht BV (2008) Complement evasion by human pathogens. Nat Rev Microbiol 6(2):132–142. doi:10.1038/nrmicro1824

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lavernia C, Lee DJ, Hernandez VH (2006) The increasing financial burden of knee revision surgery in the United States. Clin Orthop Relat Res 446:221–226. doi:10.1097/01.blo.0000214424.67453.9a

    PubMed  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384. doi:10.1038/nrmicro3028

    CAS  PubMed  Google Scholar 

  • Li H, Cui Q, Feng B, Wang J, Lu X, Weng J (2013) Antibacterial activity of TiO 2 nanotubes: influence of crystal phase, morphology and Ag deposition. Appl Surf Sci 284:179–183

    Google Scholar 

  • Li J, Liu X, Qiao Y, Zhu H, Ding C (2014) Antimicrobial activity and cytocompatibility of Ag plasma-modified hierarchical TiO2 film on titanium surface. Colloids Surf B: Biointerfaces 113:134–145. doi:10.1016/j.colsurfb.2013.08.030

    CAS  PubMed  Google Scholar 

  • Linford MR, Auch M, Möhwald H (1998) Nonmonotonic effect of ionic strength on surface dye extraction during dye-polyelectrolyte multilayer formation. J Am Chem Soc 120(1):178–182. doi:10.1021/ja972133z

    CAS  Google Scholar 

  • Lu T, Qiao Y, Liu X (2012) Surface modification of biomaterials using plasma immersion ion implantation and deposition. Interface Focus 2(3):325–336. doi:10.1098/rsfs.2012.0003

    PubMed Central  PubMed  Google Scholar 

  • Lv Q, Feng Q (2006) Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. J Mater Sci Mater Med 17(12):1349–1356

    CAS  PubMed  Google Scholar 

  • Lv W, Luo J, Deng Y, Sun Y (2013) Biomaterials immobilized with chitosan for rechargeable antimicrobial drug delivery. J Biomed Mater Res A 101 A(2):447–455

    Google Scholar 

  • Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG (2008) Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. J Biomed Mater Res A 84(2):425–435. doi:10.1002/jbm.a.31323

    CAS  PubMed  Google Scholar 

  • Maury F, Mungkalasiri J, Bedel L, Emieux F, Dore J, Renaud FN (2014) Comparative study of antibacterial efficiency of M-TiO2 (M Ag, Cu) thin films grown by CVD. Key Eng Mater 617:127–130. doi:10.4028/www.scientific.net/KEM.617.127

    CAS  Google Scholar 

  • McCloskey AP, Gilmore BF, Laverty G (2014) Evolution of antimicrobial peptides to self-assembled peptides for biomaterial applications. Pathogens 3(4):792–821. doi:10.3390/pathogens3040791

    Google Scholar 

  • McLean RJC, Hussain AA, Sayer M, Vincent PJ, Hughes DJ, Smith TJN (1993) Antibacterial activity of multilayer silver-copper surface films on catheter material. Can J Microbiol 39(9):895–899

    CAS  PubMed  Google Scholar 

  • Mei L, Ren Y, Loontjens TJA, van der Mei HC, Busscher HJ (2012) Contact-killing of adhering streptococci by a quaternary ammonium compound incorporated in an acrylic resin. Int J Artif Organs 35(10):854–863. doi:10.5301/ijao.5000149

    CAS  PubMed  Google Scholar 

  • Meng J, Zhang P, Wang S (2014) Recent progress in biointerfaces with controlled bacterial adhesion by using chemical and physical methods. Chem Asian J 9(8):2004–2016. doi:10.1002/asia.201402200

    CAS  PubMed  Google Scholar 

  • Minagar S, Berndt CC, Wang J, Ivanova E, Wen C (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8(8):2875–2888. doi:10.1016/j.actbio.2012.04.005

    CAS  PubMed  Google Scholar 

  • Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR (2011) Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 6(11):1329–1349. doi:10.2217/fmb.11.117

    CAS  PubMed  Google Scholar 

  • Nablo BJ, Prichard HL, Butler RD, Klitzman B, Schoenfisch MH (2005) Inhibition of implant-associated infections via nitric oxide release. Biomaterials 26(34):6984–6990. doi:10.1016/j.biomaterials.2005.05.017

    CAS  PubMed  Google Scholar 

  • Neoh KG, Hu X, Zheng D, Kang ET (2012) Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33(10):2813–2822. doi:10.1016/j.biomaterials.2012.01.018

    CAS  PubMed  Google Scholar 

  • Nomiya K, Tsuda K, Sudoh T, Oda M (1997) Ag(I)-N bond-containing compound showing wide spectra in effective antimicrobial activities: polymeric silver(I) imidazolate. J Inorg Biochem 68(1):39–44. doi:10.1016/S0162-0134(97)00006-8

    CAS  PubMed  Google Scholar 

  • Ogaki R, Alexander M, Kingshott P (2010) Chemical patterning in biointerface science. Mater Today 13(4):22–35. doi:10.1016/S1369-7021(10)70057-2

    CAS  Google Scholar 

  • Olson ME, Ceri H, Morck DW, Buret AG, Read RR (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66(2):86–92

    PubMed Central  PubMed  Google Scholar 

  • Paasche G, Ceschi P, Löbler M, Rösl C, Gomes P, Hahn A, Rohm HW, Sternberg K, Lenarz T, Schmitz KP, Barcikowski S, Stöver T (2011) Effects of metal ions on fibroblasts and spiral ganglion cells. J Neurosci Res 89(4):611–617. doi:10.1002/jnr.22569

    CAS  PubMed  Google Scholar 

  • Pant HR, Pant B, Sharma RK, Amarjargal A, Kim HJ, Park CH, Tijing LD, Kim CS (2013) Antibacterial and photocatalytic properties of Ag/TiO2/ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceram Int 39(2):1503–1510. doi:10.1016/j.ceramint.2012.07.097

    CAS  Google Scholar 

  • Patti JM, Allen BL, McGavin MJ, Höök M (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617

    CAS  PubMed  Google Scholar 

  • Percival S, Bowler P, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60(1):1–7. doi:10.1016/j.jhin.2004.11.014

    CAS  PubMed  Google Scholar 

  • Pegalajar-Jurado A, Easton CD, Styan KE, McArthur SL (2014) Antibacterial activity studies of plasma polymerised cineole films. J Mater Chem B 2(31):4993–5002

    Google Scholar 

  • Pourbaix M (1984) Electrochemical corrosion of metallic biomaterials. Biomaterials 5(3):122–134. doi:10.1016/0142-9612(84)90046-2

    CAS  PubMed  Google Scholar 

  • Prantl L, Bürgers R, Schreml S, Zellner J, Gosau M (2010) A novel antibacterial silicone implant material with short- and long-term release of copper ions. Plast Reconstr Surg 125(2):78e–80e. doi:10.1097/PRS.0b013e3181c2a708

    PubMed  Google Scholar 

  • Rautray TR, Narayanan R, Kwon TY, Kim KH (2010) Surface modification of titanium and titanium alloys by ion implantation. J Biomed Mater Res B Appl Biomater 93(2):581–591. doi:10.1002/jbm.b.31596

    PubMed  Google Scholar 

  • Richards RME (1981) Antimicrobial action of silver nitrate. Microbios 31(124):83–91

    CAS  PubMed  Google Scholar 

  • Rivero PJ, Urrutia A, Goicoechea J, Zamarreño CR, Arregui FJ, Matías IR (2011) An antibacterial coating based on a polymer/sol-gel hybrid matrix loaded with silver nanoparticles. Nanoscale Res Lett 6(1):1–7. doi:10.1186/1556-276X-6-305

    Google Scholar 

  • Robinson JT, Jorgolli M, Shalek AK, Yoon MH, Gertner RS, Park H (2012) Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat Nanotechnol 7(3):180–184. doi:10.1038/nnano.2011.249

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruggieri MR, Hanno PM, Levin RM (1987) Reduction of bacterial adherence to catheter surface with heparin. J Urol 138(2):423–426

    CAS  PubMed  Google Scholar 

  • Salwiczek M, Qu Y, Gardiner J, Strugnell RA, Lithgow T, McLean KM, Thissen H (2014) Emerging rules for effective antimicrobial coatings. Trends Biotechnol 32(2):82–90. doi:10.1016/j.tibtech.2013.09.008

    CAS  PubMed  Google Scholar 

  • Samanovic MI, Ding C, Thiele DJ, Darwin KH (2012) Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 11(2):106–115. doi:10.1016/j.chom.2012.01.009

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schaer TP, Stewart S, Hsu BB, Klibanov AM (2012) Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection. Biomaterials 33(5):1245–1254. doi:10.1016/j.biomaterials.2011.10.038

    CAS  PubMed  Google Scholar 

  • Shi Z, Neoh KG, Kang ET, Poh C, Wang W (2008) Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide. J Biomed Mater Res A 86(4):865–872. doi:10.1002/jbm.a.31648

    PubMed  Google Scholar 

  • Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K (2009) Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res B Appl Biomater 91(1):373–380. doi:10.1002/jbm.b.31412

    PubMed  Google Scholar 

  • Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymer 4(1):46–71. doi:10.3390/polym4010046

    CAS  Google Scholar 

  • Song Z, Borgwardt L, Høiby N, Wu H, Sørensen TS, Borgwardt A (2013) Prosthesis infections after orthopedic joint replacement: the possible role of bacterial biofilms. Orthop Rev 5:e14. doi:10.4081/or.2013.e14

    Google Scholar 

  • Stafford SL, Bokil NJ, Achard ME, Kapetanovic R, Schembri MA, McEwan AG, Sweet MJ (2013) Metal ions in macrophage antimicrobial pathways: emerging roles for zinc and copper. Biosci Rep 33(4):e00049

    PubMed Central  PubMed  Google Scholar 

  • Subbiahdoss G, Pidhatika B, Coullerez G, Charnley M, Kuijer R, van der Mei HC, Textor M, Busscher HJ (2010) Bacterial biofilm formation versus mammalian cell growth on titanium-based mono-and bi-functional coatings. Eur Cell Mater 19:205–213

    CAS  PubMed  Google Scholar 

  • Talebian N, Doudi M, Kheiri M (2014) The anti-adherence and bactericidal activity of sol–gel derived nickel oxide nanostructure films: solvent effect. J Sol-Gel Sci Technol 69(1):172–182. doi:10.1007/s10971-013-3201-8

    CAS  Google Scholar 

  • Trivedi P, Gupta P, Srivastava S, Jayaganthan R, Chandra R, Roy P (2014) Characterization and in vitro biocompatibility study of Ti–Si–N nanocomposite coatings developed by using physical vapor deposition. Appl Surf Sci 293(0):143–150. doi:10.1016/j.apsusc.2013.12.119

    CAS  Google Scholar 

  • Truong VK, Webb HK, Fadeeva E, Chichkov BN, Wu AHF, Lamb R, Wang JY, Crawford RJ, Ivanova EP (2012) Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium. Biofouling 28(6):539–550. doi:10.1080/08927014.2012.694426

    CAS  PubMed  Google Scholar 

  • Varghese S, Elfakhri S, Sheel D, Sheel P, Bolton F, Foster H (2013) Novel antibacterial silver‐silica surface coatings prepared by chemical vapour deposition for infection control. J Appl Microbiol 115(5):1107–1116. doi:10.1111/jam.12308

    CAS  PubMed  Google Scholar 

  • Vasilev K, Cook J, Griesser HJ (2009) Antibacterial surfaces for biomedical devices. Expert Rev Med Devices 6(5):553–567. doi:10.1586/erd.09.36

    PubMed  Google Scholar 

  • Visai L, De Nardo L, Punta C, Melone L, Cigada A, Imbriani M, Arciola CR (2011) Titanium oxide antibacterial surfaces in biomedical devices. Int J Artif Organs 34(9):929–946. doi:10.5301/ijao.5000050

    CAS  PubMed  Google Scholar 

  • Wan YZ, Raman S, He F, Huang Y (2007a) Surface modification of medical metals by ion implantation of silver and copper. Vacuum 81(9):1114–1118. doi:10.1016/j.vacuum.2006.12.011

    CAS  Google Scholar 

  • Wan YZ, Xiong GY, Liang H, Raman S, He F, Huang Y (2007b) Modification of medical metals by ion implantation of copper. Appl Surf Sci 253(24):9426–9429. doi:10.1016/j.apsusc.2007.06.031

    CAS  Google Scholar 

  • Webb HK, Hasan J, Truong VK, Crawford RJ, Ivanova EP (2011) Nature inspired structured surfaces for biomedical applications. Curr Med Chem 18(22):3367–3375. doi:10.2174/092986711796504673

    CAS  PubMed  Google Scholar 

  • Webb HK, Crawford RJ, Ivanova EP (2014) Wettability of natural superhydrophobic surfaces. Adv Colloid Interf Sci 210:58–64. doi:10.1016/j.cis.2014.01.020

    CAS  Google Scholar 

  • Whitehouse JD, Deborah Friedman N, Kirkland KB, Richardson WJ, Sexton DJ (2002) The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost. Infect Control Hosp Epidemiol 23(4):183–189. doi:10.1086/502033

    PubMed  Google Scholar 

  • Wilkinson M, Kafizas A, Bawaked SM, Obaid AY, Al-Thabaiti SA, Basahel SN, Carmalt CJ, Parkin IP (2013) Combinatorial atmospheric pressure chemical vapor deposition of graded TiO2–VO2 mixed-phase composites and their dual functional property as self-cleaning and photochromic window coatings. ACS Comb Sci 15(6):309–319

    CAS  PubMed  Google Scholar 

  • Williams JF, Worley SD (2000) Infection-resistant nonleachable materials for urologic devices. J Endourol 14(5):395–400. doi:10.1089/end.2000.14.395

    CAS  PubMed  Google Scholar 

  • Wong SY, Li Q, Veselinovic J, Kim B-S, Klibanov AM, Hammond PT (2010) Bactericidal and virucidal ultrathin films assembled layer by layer from polycationic N-alkylated polyethylenimines and polyanions. Biomaterials 31(14):4079–4087. doi:10.1016/j.biomaterials.2010.01.119

    CAS  PubMed  Google Scholar 

  • Wong CL, Tan YN, Mohamed AR (2011) A review on the formation of titania nanotube photocatalysts by hydrothermal treatment. J Environ Manag 92(7):1669–1680

    CAS  Google Scholar 

  • Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM (2011) Toxicological considerations of clinically applicable nanoparticles. Nano Today 6(6):585–607. doi:10.1016/j.nantod.2011.10.001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshinari M, Oda Y, Kato T, Okuda K (2001) Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 22(14):2043–2048. doi:10.1016/S0142-9612(00)00392-6

    CAS  PubMed  Google Scholar 

  • Yuan S, Wan D, Liang B, Pehkonen S, Ting Y, Neoh K, Kang E (2011) Lysozyme-coupled poly (poly (ethylene glycol) methacrylate)− stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir 27(6):2761–2774. doi:10.1021/la104442f

    CAS  PubMed  Google Scholar 

  • Yue C, Kuijer R, Kaper HJ, van der Mei HC, Busscher HJ (2014) Simultaneous interaction of bacteria and tissue cells with photocatalytically activated, anodized titanium surfaces. Biomaterials 35(9):2580–2587

    CAS  PubMed  Google Scholar 

  • Zaborowska M, Welch K, Brånemark R, Khalilpour P, Engqvist H, Thomsen P, Trobos M (2014) Bacteria-material surface interactions: methodological development for the assessment of implant surface induced antibacterial effects. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33179

    PubMed  Google Scholar 

  • Zhang W, Li Y, Niu J, Chen Y (2013) Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir 29(15):4647–4651. doi:10.1021/la400500t

    CAS  PubMed  Google Scholar 

  • Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res Part B Appl Biomater 91(1):470–480. doi:10.1002/jbm.b.31463

    PubMed  Google Scholar 

  • Zhao B, Van Der Mei HC, Subbiahdoss G, De Vries J, Rustema-Abbing M, Kuijer R, Busscher HJ, Ren Y (2014) Soft tissue integration versus early biofilm formation on different dental implant materials. Dent Mater 30(7):716–727. doi:10.1016/j.dental.2014.04.001

    CAS  PubMed  Google Scholar 

  • Zobrist C, Sobocinski J, Lyskawa J, Fournier D, Miri V, Traisnel M, Jimenez M, Woisel P (2011) Functionalization of titanium surfaces with polymer brushes prepared from a biomimetic RAFT agent. Macromolecules 44(15):5883–5892

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena P. Ivanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pham, V.T.H., Bhadra, C.M., Truong, V.K., Crawford, R.J., Ivanova, E.P. (2015). Designing Antibacterial Surfaces for Biomedical Implants. In: Ivanova, E., Crawford, R. (eds) Antibacterial Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-18594-1_6

Download citation

Publish with us

Policies and ethics