Skip to main content

Basic Elements for Energy Storage and Conversion

  • Chapter
Lithium Batteries
  • 7935 Accesses

Abstract

Major challenges of the twenty-first century will concern the global climate change and dwindling fossil energy reserves that motivate to develop sustainable solutions based on renewable sources of energy. Because they are intermittent systems, accumulators of electric power are required. This chapter provides basic concept for the energy storage and conversion systems. Basic elements of technologies are also given, which make an introduction of the topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. El-Ashry M (2010) Renewvable energy policy network for the 21st century. http://www.harbortaxgroup.com/wp-content. Accessed Sept 2010

  2. The European Wind Energy Association (2014) Wind in power 2013 European statistics. http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA_Annual_Statistics_2013.pdf. Accessed Feb 2014

  3. Schneider EL, Oliveira CT, Brito RM, Malfatti CF (2014) Classification of discarded MIMH and Li-ion batteries and reuse of the cells still in operational conditions in prototypes. J Power Sourc 262:1–9

    Article  Google Scholar 

  4. Van Noorden R (2014) A better battery. Nature 507:26–28

    Article  Google Scholar 

  5. International Energy Agency (IEA) (2014) http://www.iea.org/statistics

  6. European Environment Agency (2013) Atmospheric greenhouse gas concentrations. http://www.eea.europa.eu/data-and-maps/indicators/atmospheric-greenhouse-gas-concentrations-3/assessment. Accessed Feb 2014

  7. Zaghib K, Guerfi A, Hovington P, Vijh A, Trudeau M, Mauger A, Goodenough JB, Julien CM (2013) Review and analysis of nanostructured olivine-based lithium rechargeable batteries: status and trends. J Power Sourc 232:357–369

    Article  Google Scholar 

  8. Szepesi T, Shum K (2002) http://www.eetimes.com/document.asp?doc_id=1225408. Accessed 20 Feb 2002

  9. Feynman R (1964) The Feynman lectures on physics, vol 1. Addison Wesley, New York

    Google Scholar 

  10. Zaghib K, Dontigny M, Guerfi A, Charest P, Mauger A, Julien CM (2011) Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sourc 196:3949–3954

    Article  Google Scholar 

  11. ITM Power (2014) www.itm-power.com

  12. Birk JR (1976) Energy storage, batteries, and solid electrolytes: prospects and problems. In: Mahan GD, Roth WL (eds) Superionic conductors. Plenum, New York, pp 1–14

    Chapter  Google Scholar 

  13. Julien C, Nazri GA (1994) Solid state batteries: materials design and optimization. Kluwer, Boston

    Book  Google Scholar 

  14. Julien C, Nazri GA (2001) Intercalation compounds for advanced lithium batteries. In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials, vol 10. Academic Press, San Diego, pp 99–184, chap 3

    Chapter  Google Scholar 

  15. Augustynski J, Dalard F, Machat JY, Sohm JC (1975) Electric cells of the Leclanché type. US Patent 3,902,921, 2 Sept 1975

    Google Scholar 

  16. Ekern RJ, Armacanqui ME, Rose JI (1997) Reduced environmental hazard Leclanché cell having improved performance ionically permeable separator. US Patent 5,604,054, 18 Feb 1997

    Google Scholar 

  17. Bascap (2009) http://www.batscap.com. Accessed 5 Mar 2009

  18. Julien C (1997) Solid state batteries. In: Gellings PJ, Bouwmeester HJM (eds) The CRC handbook of solid state electrochemistry. CRC Press, Boca Raton, pp 372–406

    Google Scholar 

  19. Ogumi Z, Uchimoto Y, Takehara Z, Kamanori Y (1988) Thin all-solid-state lithium batteries utilizing solid polymer electrolyte prepared by plasma polymerization. J Electrochem Soc 135:2649–2650

    Article  Google Scholar 

  20. Weppner W, Huggins R (1977) Determination of the kinetic parameters of mixed-conducting electrodes and applications to the system Li3Sb. J Electrochem Soc 124:1569–1578

    Article  Google Scholar 

  21. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  Google Scholar 

  22. Julien CM, Mauger A, Zaghib K, Vijh A (2010) Lectures of the workshop on materials science for energy storage, Chennai, India, 18–22 Jan 2010

    Google Scholar 

  23. Linden D, Reddy TB (2001) Handbook of batteries, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  24. Bergveld HJ, Kruijt WS, Notten PHL (2002) Battery management systems, design by modelling. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  25. Ploehn HJ, Ramadass P, White RE (2004) Solvent diffusion model for aging of lithium-ion battery cells. J Electrochem Soc 151:A456–A462

    Article  Google Scholar 

  26. Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz RJ (2001) Aging mechanism in Li ion cells and calendar life predictions. J Power Sourc 97–98:13–21

    Article  Google Scholar 

  27. Wright RB, Christopherden JP, Motloch CG, Belt JR, Ho CD, Battaglia VS, Barnes JA, Duong TQ, Sutula RA (2003) Power fade and capacity fade resulting from cycle-life testing of advanced technology development program lithium-ion batteries. J Power Sourc 119–121:865–869

    Article  Google Scholar 

  28. Mike M, Les A, Knakal T (2011) Lithium ion vehicle start batteries, power for the future. In: Proc NDIA ground vehicle systems engineering and technology symposium, Dearborn, MI, Accessed 9–11 Aug 2011

    Google Scholar 

  29. Doerffel D, Sharkh SA (2006) A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries. J Power Sourc 155:395–400

    Article  Google Scholar 

  30. Hashem AM, El-Taweel RS, Abuzeid HM, Abdel-Ghany AE, Eid AE, Groult H, Mauger A, Julien CM (2012) Structural and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 material prepared a two-step synthesis via oxalate precursor. Ionics 18:1–9

    Article  Google Scholar 

  31. Gallay R (2014) Energy storage. Ragone. http://www.garmanage.com/atelier/index.cgi?path=public/Energy_storage/Ragone

  32. Christen T, Carlen MW (2000) Theory of Ragone plots. J Power Sourc 91:210–216

    Article  Google Scholar 

  33. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P (2010) Ultrahigh-power micrometer sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5:651–654

    Article  Google Scholar 

  34. Srinivasan V (2011) The three laws of batteries and a bonus Zeroth law. http://gigaom.com/2011/03/18/the-three-laws-of-batteries-and-a-bonus-zeroth-law. Accessed 18 Mar 2011

  35. Scherson DA, Palencsar A (2006) Batteries and electrochemical capacitors. Interface Spring 2006:17–22

    Google Scholar 

  36. Winter M, Brodd RJ (2004) What are batteries, fuel cells and supercapacitors? Chem Rev 104:4245–4269

    Article  Google Scholar 

  37. Linden D, Reddy T (2002) The handbook of batteries, 3rd edn. The McGraw-Hill, New York

    Google Scholar 

  38. Colin V, Scrosati B (1997) Modern batteries, 2nd edn. Wiley, Portland

    Google Scholar 

  39. Office of Energy Efficiency & Renewable Energy (2014) http://energy.gov/eere/vehicles/vehicle-technologies-office-batteries. Accessed July 2014

  40. Snyder K (2012) Overview and progress of United States Advanced Battery Consortium (USABC) activity. http://www1.eere.energy.gov/vehiclesandfuels/pdfs/merit_review_2012/energy_storage/es097_snyder_2012_o.pdf. Accessed 15 May 2012

  41. Granqvist CG, Azens A, Hjelm A, Kullman L, Niklasson GA, Rönnow D, Mattsson MS, Veszelei M, Vaivars G (1998) Recent advances in electrochromics for smart windows applications. Sol Energ 63:199–216

    Article  Google Scholar 

  42. Niklasson GA, Granqvisr CG (2006) Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 17:127–156

    Article  Google Scholar 

  43. Cogan SF, Plante TD, Parker MA, Rauh RD (1986) Free-electron electrochromic modulation in crystalline LixWO3. J Appl Phys 60:2735–3738

    Article  Google Scholar 

  44. Castro-Garcia S, Pecquenard B, Bender A, Livage J, Julien C (1997) Electrochromic properties of tungsten oxides synthesized from aqueous solutions. Ionics 3:104–109

    Article  Google Scholar 

  45. Hatt A (2013) Raising the IQ of smart windows. http://www.eurekalert.org/pub_releases/2013-08/dbnl-rti081413.php. Accessed 14 Aug 2013

  46. Llordés A, Garcia G, Gazquez J, Milliron DJ (2013) Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500:323–326

    Article  Google Scholar 

  47. Al-Sakka M, Gualous H, Omar N, Van Mierlo J (2012) Batteries and supercapacitors for electric vehicles. http://cdn.intechopen.com/pdfs-wm/41417.pdf

    Google Scholar 

  48. Burke A (2000) Ultracapitors: why, how, and where is the technology. J Power Sourc 91:37–50

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Julien, C., Mauger, A., Vijh, A., Zaghib, K. (2016). Basic Elements for Energy Storage and Conversion. In: Lithium Batteries. Springer, Cham. https://doi.org/10.1007/978-3-319-19108-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19108-9_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19107-2

  • Online ISBN: 978-3-319-19108-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics