Skip to main content

Convex Recovery of a Structured Signal from Independent Random Linear Measurements

  • Chapter
Sampling Theory, a Renaissance

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This chapter develops a theoretical analysis of the convex programming method for recovering a structured signal from independent random linear measurements. This technique delivers bounds for the sampling complexity that are similar to recent results for standard Gaussian measurements, but the argument applies to a much wider class of measurement ensembles. To demonstrate the power of this approach, the chapter presents a short analysis of phase retrieval by trace-norm minimization. The key technical tool is a framework, due to Mendelson and coauthors, for bounding a nonnegative empirical process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The extended real numbers \(\overline{\mathbb{R}}:= \mathbb{R} \cup \{\pm \infty \}\). A proper convex function takes at least one finite value but never the value \(-\infty \).

  2. 2.

    A Rademacher random variable takes the two values ± 1 with equal probability.

References

  1. D. Amelunxen, M. Lotz, M.B. McCoy, J.A. Tropp, Living on the edge: phase transitions in convex programs with random data. Inf. Inference 3(3), 224–294 (2014). Available at http://arXiv.org/abs/1303.6672

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Balan, B.G. Bodmann, P.G. Casazza, D. Edidin, Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15(4), 488–501 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence (Oxford University Press, Oxford, 2013)

    Book  Google Scholar 

  4. T.T. Cai, T. Liang, A. Rakhlin, Geometrizing local rates of convergence for linear inverse problems (April 2014). Available at http://arXiv.org/abs/1404.4408

  5. E.J. Candès, T. Strohmer, V. Voroninski, PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

    Article  MATH  Google Scholar 

  6. V. Chandrasekaran, B. Recht, P.A. Parrilo, A.S. Willsky, The convex geometry of linear inverse problems. Found. Comput. Math. 12(6), 805–849 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.Y. Chen, A. Gittens, J.A. Tropp, The masked sample covariance estimator: an analysis via the matrix Laplace transform method. Inf. Inference 1, 2–20 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. K.R. Davidson, S.J. Szarek, Local operator theory, random matrices and Banach spaces, in Handbook of the Geometry of Banach Spaces, vol. I (North-Holland, Amsterdam, 2001), pp. 317–366

    Google Scholar 

  9. M. Fazel. Matrix Rank Minimization with Applications. Ph.D. thesis, Stanford University, 2002.

    Google Scholar 

  10. R. Foygel, L. Mackey, Corrupted sensing: novel guarantees for separating structured signals. Trans. Inf. Theory 60(2), 1223–1247 (2014)

    Article  MathSciNet  Google Scholar 

  11. Y. Gordon, Some inequalities for Gaussian processes and applications. Isr. J. Math. 50(4), 265–289 (1985)

    Article  MATH  Google Scholar 

  12. Y. Gordon. On Milman’s inequality and random subspaces which escape through a mesh in \(\mathbf{R}^{n}\), in Geometric Aspects of Functional Analysis (1986/1987). Lecture Notes in Mathematics, vol. 1317 (Springer, Berlin, 1988), pp. 84–106

    Google Scholar 

  13. D. Gross, Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory 57(3), 1548–1566 (2011)

    Article  Google Scholar 

  14. V. Koltchinskii, S. Mendelson, Bounding the smallest singular value of a random matrix without concentration (December 2013). Available at http://arXiv.org/abs/1312.3580

  15. R. Latała, K. Oleszkiewicz, On the best constant in the Khinchin-Kahane inequality. Studia Math. 109(1), 101–104 (1994)

    MathSciNet  MATH  Google Scholar 

  16. G. Lecué, S. Mendelson, Compressed sensing under weak moment assumptions (January 2014). Available at http://arXiv.org/abs/1401.2188

  17. M. Ledoux, M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  18. S. Mendelson. Empirical processes with a bounded \(\psi _{1}\) diameter. Geom. Funct. Anal. 20(4), 988–1027 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Mendelson, A remark on the diameter of random sections of convex bodies (December 2013). Available at http://arXiv.org/abs/1312.3608

  20. S. Mendelson, Learning without concentration. J. Assoc. Comput. Mach. (2014, to appear). 62(3), (2015). Available at http://arXiv.org/abs/1401.0304

  21. S. Mendelson, Learning without concentration for general loss functions (October 2014). Available at http://arXiv.org/abs/1410.3192

  22. S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Reconstruction and subgaussian operators in asymptotic geometric analysis. Geom. Funct. Anal. 17(4), 1248–1282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Linear Spaces. Number 1200 in LNM (Springer, New York, 1986)

    Google Scholar 

  24. S. Oymak, B. Hassibi, New null space results and recovery thresholds for matrix rank minimization. Partial results presented at ISIT 2011 (2010). Available at http://arXiv.org/abs/1011.6326

  25. S. Oymak, B. Hassibi, Sharp MSE bounds for proximal denoising. Partial results presented at Allerton 2012 (March 2013). Available at http://arxiv.org/abs/1305.2714

  26. S. Oymak, C. Thrampoulides, B. Hassibi, Simple bounds for noisy linear inverse problems with exact side information (December 2013). Available at http://arXiv.org/abs/1312.0641

  27. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  28. R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)

    Book  MATH  Google Scholar 

  29. M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements. Commun. Pure Appl. Math. 61(8), 1025–1045 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Sion, On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Stojnic, Various thresholds for â„“ 1-optimization in compressed sensing (2009). Available at http://arXiv.org/abs/0907.3666

    Google Scholar 

  32. M. Talagrand, The Generic Chaining. Upper and Lower Bounds of Stochastic Processes. Springer Monographs in Mathematics (Springer, Berlin, 2005)

    Google Scholar 

  33. C. Thrampoulides, S. Oymak, B. Hassibi, Simple error bounds for regularized noisy linear inverse problems. Appeared at ISIT 2014 (January 2014). Available at http://arXiv.org/abs/1401.6578

  34. J. Tropp, M. Wakin, M. Duarte, D. Baron, R. Baraniuk, Random filters for compressive sampling and reconstruction, in Proceedings of the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, 2006 (ICASSP 2006), vol. 3, May 2006, pp. III–875

    Google Scholar 

  35. A.W. van der Vaart, J.A. Wellner, Weak Convergence and Empirical Processes. Springer Series in Statistics (Springer, New York, 1996). With applications to statistics.

    Google Scholar 

  36. R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, in Compressed Sensing (Cambridge University Press, Cambridge, 2012), pp. 210–268

    Google Scholar 

  37. G.A. Watson, Characterization of the subdifferential of some matrix norms. Linear Algebra Appl. 170, 33–45 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

JAT gratefully acknowledges support from ONR award N00014-11-1002, AFOSR award FA9550-09-1-0643, and a Sloan Research Fellowship. Thanks are also due to the Moore Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tropp, J.A. (2015). Convex Recovery of a Structured Signal from Independent Random Linear Measurements. In: Pfander, G. (eds) Sampling Theory, a Renaissance. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-19749-4_2

Download citation

Publish with us

Policies and ethics