Skip to main content

A Framework for Sustainable Design of Algal Biorefineries: Economic Aspects and Life Cycle Analysis

  • Chapter
Algal Biorefineries

Abstract

In this chapter, a framework for sustainable design of algal biorefineries with respect to economic and environmental objectives is presented. As part of the framework, a superstructure is formulated to represent the design space – describing technologies developed for processing various types of algae feedstock for the production of biodiesel and co-products. Relevant data and parameters for each process such as yield, conversion, operational cost is then collected using a standardized format (a generic model) and stored in a database. The sustainable design problem is then formulated mathematically as a mixed integer nonlinear programming problem, and is solved first to identify the optimal designs with respect to economic optimality. These optimal designs are then analyzed further in terms of environmental performance using life cycle analysis. For sustainability analysis, in total five impact categories are calculated including Photochemical oxidation potential (POP), global warming potential (GWP), aquatic ecotoxicity (EcotA), Carcinogenic emissions to urban air (EUAC), and median lethal dose (LD50). To add robustness to the analysis, the framework includes uncertainty analysis using Monte Carlo simulations as well. The application of the framework is highlighted on a case study focusing on feedstock microalgae cultivated in Raceway ponds to produce biodiesel. The framework with the database and superstructure provides an enabling tool to support systematic design and analysis of future and sustainable algal biorefinery concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabi AO, Tampier M, Bibeau E (2009) Microalgae technologies & processes for biofuels/bioenergy production in british Columbia. The British Columbia Council, Vancouver

    Google Scholar 

  • Cheali P, Quaglia A, Gernaey KV, Sin G (2014) Effect of market price uncertainties on the design of optimal biorefinery systems—a systematic approach. Ind Eng Chem Res 53(14):6021–6032

    Article  CAS  Google Scholar 

  • Cheali P, Gernaey KV, Sin G (2015a) Uncertainties in early-stage capital cost estimation of process design – a case study on biorefinery design. Front Energ Res. doi:10.3389/fenrg.2015.00003

  • Cheali P, Vivion A, Gernaey KV, Sin G (2015b) Optimal design of algae biorefinery processing networks for the production of protein, ethanol and biodiesel. Comput Aid Chem Eng., 12th International symposium on process systems engineering and 25th European symposium on computer aided process engineering, 1151–1156

    Google Scholar 

  • Curran MA (2006) Life cycle assessment: principles and practice. Scientific Applications International Corporation (SAIC). http://www.epa.gov/nrmrl/std/lca/pdfs/chapter1_frontmatter_lca101.pdf

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  • Divakaran R, Pillai V (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422

    Article  CAS  Google Scholar 

  • DOE (2013) MYPP, Biomass Multi-year program plan – May 2013. U.S.Do.Energy, Editor 2013, Bioenergy Technologies Office, USA

    Google Scholar 

  • EPA (2006) Life cycle assessment: principles and practice, EPA/600/R-06/060. US Environmental Protection Agency/Office of research and development, Cincinnati

    Google Scholar 

  • FAO Aquatic Biofuels Working Group (2010) Review paper – alage-based biofuels: applications and co-products. FAO Publications. ISBN 978-92-5-106623-2

    Google Scholar 

  • Gargalo CL, Sin G (2015) Sustainable process design under uncertainty analysis: targeting environmental indicators. Copenhagen, Denmark: ESCAPE/PSE 25

    Google Scholar 

  • Gong J, You F (2014) Global optimization for sustainable design and synthesis of algae processing network for CO2 mitigation and biofuel production using life cycle optimization. AICHE J 60(9):3195–3210

    Article  CAS  Google Scholar 

  • Granados MR, Ancien FG, Gomez C, Fernandez-Sevilla JM, Grima EM (2012) Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol 118:102–110

    Article  CAS  PubMed  Google Scholar 

  • Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Eng Syst Saf 81(1):23–69. doi:10.1016/S0951-8320(03)00058-9

    Article  Google Scholar 

  • Humbert S, Schryver A De, Margni M, Jolliet O (2002) IMPACT 2002 + : User Guide. Lausanne: Swiss Federal Institute of Technology Lausanne (EPFL). Retrieved from http://www.quantis-intl.com/pdf/IMPACT2002_UserGuide_for_vQ2.2.pdf

  • Iman RL, Conover WJ (2007) A distribution-free approach to inducing rank correlation among input variables. Commun Stat – Sim Comput 11(3):311–334. doi:10.1080/03610918208812265

    Article  Google Scholar 

  • Jones S, Zhu Y, Anderson D, Hallen R, Elliott D, Schmidt A, Albrecht K, Hart T, Butcher M, Drennan C, Snowden-Swan L (2014) Process design and economics for the conversion of algal biomass to hydrocarbons: whole algae hydrothermal liquefaction and upgrading. Pacifica Northwest National Laboratory, U.S. department of energy, PNNL-23227

    Google Scholar 

  • Levine RB (2013) The production of algal biodiesel using hydrothermal carbonization and in situ transesterification. University of Michigan

    Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Carlero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  PubMed  Google Scholar 

  • Long RB, Abdelkader E (2011) Mixed-polarity azeotropic solvents for efficient extraction of lipids from nannochloropsis microalgae. Am J Biochem Biotechnol 7:70–73

    Article  Google Scholar 

  • Martin M, Grossmann IE (2013) Optimal engineered algae composition for the integrated simultaneous production of bioethanol and biodiesel. AICHE J 59(8):2872–2883

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  PubMed  Google Scholar 

  • Petrick I, Dombrowski L, Kröger M, Beckert T, Kuchling T, Kureti S (2013) Algae biorefinery – material and energy use of algae. DBFZ Report No. 16

    Google Scholar 

  • Petrusevski B, Bolier G, Van Breemen AN, Alaerts GJ (1995) Tangential flow filtration: a method to concentrate freshwater algae. Water Res 29:1419–1424

    Article  CAS  Google Scholar 

  • Price CA, Mendila-Morgenthaler LR, Goldstein M, Breden EN, Guillard RRL (1974) Harvest of planktonic marine algae by centrifugation into gradients of silica in the CF-6 continuous-flow zonal rotor. Biol Bull 147:136–145

    Article  CAS  PubMed  Google Scholar 

  • Prommuak C, Pavasant P, Quitain AT, Goto M, Shotipruk A (2012) Microalgal lipid extraction and evaluation of single-step biodiesel production. Eng J 16:158–166

    Article  Google Scholar 

  • Rizwan M, Lee JH, Gani R (2013) Optimal processing pathway for the production of biodiesel from microalgal biomass: a superstructure based approach. Comput Chem Eng 58:305–314

    Article  CAS  Google Scholar 

  • Sim TS, Goh A, Becker EW (1988) Comparison of centrifugation, dissolved air flotation and drum filtration techniques for harvesting sewage-grown algae. Biomass 16:51–62

    Article  Google Scholar 

  • Sin G, Gernaey KV, Neumann MB, van Loosdrecht MCM, Gujer W (2009) Uncertainty analysis in WWTP model applications: a critical discussion using an example from design. Water Res 43(11):2894–2906. doi:10.1016/j.watres.2009.03.048

    Article  CAS  PubMed  Google Scholar 

  • Sirin S, Trobajo R, Ibancz C (2012) Harvesting the microalgae Phaeodactylum tricornutum with polyaluminium chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. J Appl Phycol 24:1067–1080

    Article  CAS  Google Scholar 

  • Vicente G, Martinez M, Aracil J (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92:294–305

    Google Scholar 

  • Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Dube MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour Technol 89:1–16

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gürkan Sin .

Editor information

Editors and Affiliations

List of Acronyms

List of Acronyms

AHTL :

Algae hydrothermal liquefaction

CAPEX :

Capital Investment

CDF :

Cumulative distribution function

CF :

Characterization factor

CTUe :

Comparative toxic units

EBITDA :

Earnings Before Interest, Taxes, Depreciation and Amortization

EcotA :

Aquatic ecotoxicity

EPA :

Environmental protection agency

EUA C :

Carcinogenic emissions to urban air

EVPI :

Expected value of perfect information

GAMS :

General algebraic modeling system

GWP :

Global warming potential

IRR :

Internal rate of return

LD 50 :

Median lethal dose

MI(N)LP :

Mixed integer (non)-linear programming

MM$/a :

Million dollar per year

NPV :

Net present value

PAF :

Potential affected fraction

PEI :

Potential environmental impact

POP :

Photochemical oxidation potential

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cheali, P., Gargalo, C., Gernaey, K.V., Sin, G. (2015). A Framework for Sustainable Design of Algal Biorefineries: Economic Aspects and Life Cycle Analysis. In: Prokop, A., Bajpai, R., Zappi, M. (eds) Algal Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-20200-6_17

Download citation

Publish with us

Policies and ethics