Skip to main content

New Trends and Perspectives in the Evolution of Neurotransmitters in Microbial, Plant, and Animal Cells

  • Chapter
Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health

Part of the book series: Advances in Experimental Medicine and Biology ((MICENDO,volume 874))

Abstract

The evolutionary perspective on the universal roles of compounds known as neurotransmitters may help in the analysis of relations between all organisms in biocenosis—from microorganisms to plant and animals. This phenomenon, significant for chemosignaling and cellular endocrinology, has been important in human health and the ability to cause disease or immunity, because the “living environment” influences every organism in a biocenosis relationship (microorganism-microorganism, microorganism-plant, microorganism-animal, plant-animal, plant-plant and animal-animal). Non-nervous functions of neurotransmitters (rather “biomediators” on a cellular level) are considered in this review and ample consideration is given to similarities and differences that unite, as well as distinguish, taxonomical kingdoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler J (1969) Chemoreception in bacteria. Science 166:1588–1597

    Article  CAS  PubMed  Google Scholar 

  • Amaroli A, Gallus L, Passalacqua M et al (2003) Detection of cholinesterase activities and acetylcholine receptors during the developmental cycle of Dictyostelium discoideum. Eur J Protistol 39:213–222

    Article  Google Scholar 

  • Anuchin AM, Chuvelev DI, Kirovskaya TA, Oleskin AV (2007) The effect of monoamine neuromediators on the growth of culture and cellular aggregation of Escherichia coli K-12. In: Zinchenko VP (ed) Reception and Intracellular Signaling. Proceedings of international conference, Institute of Cell Biophysics RAS, Pushchino, 5–7 June 2007, pp 241–243

    Google Scholar 

  • Anuchin AM, Chuvelev DI, Kirovskaya TA, Oleskin AV (2008) Effects of monoamine neuromediators on the growth-related variables of Escherichia coli K-12. Microbiology 77(6):674–680

    Article  CAS  Google Scholar 

  • Askar A, Rubach K, Schormüller J (1972) Dünnschichtchromatographische Trennung der in Bananen vorkommenden Amin-Fraktion. Chem Microbiol Technol Lebensm 1:187–190

    CAS  Google Scholar 

  • Atta-ur-Rahman PS, Khalid A et al (2001) Acetyl and butyryl cholinesterase-inhibiting triterpenoid alkaloids from Buxus papillosa. Phytochemistry 58:963–968

    Article  CAS  PubMed  Google Scholar 

  • Augustinsson KB (1949) Substrate concentration and specificity of choline ester-splitting enzymes. Arch Biochem 23:111

    CAS  PubMed  Google Scholar 

  • Baburina O, Shabala S, Newman I (2000) Verapamil-induced kinetics of ion flux in oat seedlings. Aust J Plant Physiol 27:1031–1040

    Google Scholar 

  • Badria FA (2002) Melatonin, serotonin and tryptamine in some Egyptian food and medicinal plants. J Med Food 5:153–157

    Article  CAS  PubMed  Google Scholar 

  • Bajjalieh SM, Scheller RH (1995) The biochemistry of neurotransmitter secretion. J Biol Chem 270(5):1971–1974

    Article  CAS  PubMed  Google Scholar 

  • Ballal S, Ellias R, Fluck R et al (1993) The synthesis and bioassay of indole-3-acetylcholine. Plant Physiol Biochem 31:249–255

    CAS  Google Scholar 

  • Baluska F, Mancuso S, Volkmann D, Barlow P (2004) Root apices as plant command centers: the unique “brain-like” status of the root apex transition zone. Biologia (Bratislava) 59(Suppl 13):7–19

    CAS  Google Scholar 

  • Baluska F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    Article  CAS  PubMed  Google Scholar 

  • Baluska F, Hlavacka A, Mancuso S, Barlow PW (2006a) Neurobiological view of plants and their body plan. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants—neuronal aspects of plant life. Springer, Berlin, pp 19–35

    Google Scholar 

  • Baluska F, Mancuso S, Volkmann D (eds) (2006b) Communication in plants—neuronal aspects of plant life. Springer, Berlin

    Google Scholar 

  • Balzer I, Poeggeler B, Hardeland R (1993) Circadian rhythms of indoleamines in a dinoflagellate Gonyaulax polyedra: persistence of melatonin rhythm in constant darkness and relationship to 5-methoxytryptamine. In: Touitou Y, Arendt J, Pevet P (eds) Melatonin and the pineal gland: from basic science to clinical applications. Excerpta Medica, Amsterdam, pp 83–186

    Google Scholar 

  • Bansal T, Englert D, Lee J et al (2007) Differential effects of epinephrine norepinephrine and indole on Escherichia coli O157:H7 chemotaxis colonization and gene expression. Infect Immun 75(9):4597–4607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bamel K, Gupta SC, Gupta R (2007) Acetylcholine causes rooting in leaf explants of in vitro raised tomato Lycopersicon esculentum Miller seedlings. Life Sci 80(24-25):2393–2396

    Article  CAS  PubMed  Google Scholar 

  • Barwell CJ (1979) The occurrence of histamine in the red alga of Furcellaria lumbricalis Lamour. Bot Mar 22:399–401

    CAS  Google Scholar 

  • Barwell CJ (1989) Distribution of histamine in the thallus of Furcellaria lumbricalis. J Appl Phycol 1:341–344

    Article  Google Scholar 

  • Bednarska E, Tretyn A (1989) Ultrastructural localization of acetylcholinesterase activity in the stigma of Pharbitis nil L. Cell Biol Int Rep 13:275–281

    Article  Google Scholar 

  • Bednarska E (1992) The localization of nonspecific esterase and cholinesterase activity in germinating pollen and in pollen tube of Vicia faba L. The effect of actinomycin D and cycloheximide. Biol Plant 34:229–240

    Article  CAS  Google Scholar 

  • Belay T, Sonnenfeld G (2002) Differential effects of catecholamines on in vitro growth of pathogenic bacteria. Life Sci 71(4):447–456

    Article  CAS  PubMed  Google Scholar 

  • Belenikina NS, Strakhovskaya MG, Fraikin GY (1991) Near-UV activation of yeast growth. J Photochem Photobiol B 10:51–55

    Article  CAS  PubMed  Google Scholar 

  • Beljelarskaya SN, Sutton F (2003) Expression of the mammalian serotonin receptor in plant and amphibian cells. Mol Biol 37(3):387–391. doi:10.1023/A:1024283126198

    Article  CAS  Google Scholar 

  • Bell EA, Jansen DH (1971) Medical and ecological considerations of L-dopa and 5-HTP in seeds. Nature 229:136–137

    Article  CAS  PubMed  Google Scholar 

  • Beri V, Gupta R (2007) Acetylcholinesterase inhibitors neostigmine and physostigmine inhibit induction of alpha-amylase activity during seed germination in barley, Hordeum vulgare var. Jyoti. Life Sci 80:2386–2388

    Article  CAS  PubMed  Google Scholar 

  • Berman AL, Dityatev E, Frishman DI (1991) Physicochemical properties of signal receptor domains as the basis for sequence comparison. Comp Biochem Physiol B 98:445–449

    Article  CAS  PubMed  Google Scholar 

  • Boaventura MAD, Lopes RFA, Takahashi JA (2004) Microorganisms as tools in modern chemistry: the biotransformation of 3-indolylacetonitrile and tryptamine by fungi. Braz J Microbiol 35:345–347

    Article  CAS  Google Scholar 

  • Bodmer S, Imark C, Kneubühl M (1999) Biogenic amines in foods: histamine and food processing. Inflamm Res 48:296–300

    Article  CAS  PubMed  Google Scholar 

  • Boron WF, Boulpaep EL (2005) Medical physiology: a cellular and molecular approach. Elsevier/Saunders, Philadelphia

    Google Scholar 

  • Boucek RJ, Alvarez TR (1970) 5-Hydroxytryptamine: a cytospecific growth stimulator of cultured fibroblasts. Science 167:898–899

    Article  CAS  PubMed  Google Scholar 

  • Bowden K, Brown BG, Batty JE (1954) 5-Hydroxytryptamine: its occurrence in cowhage. Nature 174:925–926

    Article  CAS  PubMed  Google Scholar 

  • Bozso BA, Fluck RA, Jameton RA et al (1995) A versatile and efficient methodology for the preparation of choline ester auxin conjugates. Phytochemistry 40:1027–1031

    Article  CAS  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S et al (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419

    Article  CAS  PubMed  Google Scholar 

  • Budantsev AY, Roshchina VV (2004) Testing alkaloids as acetylcholinesterase activity inhibitors. Farmatsiya (Moscow) 5:37–39

    Google Scholar 

  • Budantsev AY, Roshchina VV (2007) Cholinesterase activity as a biosensor reaction for natural allelochemicals: pesticides and pharmaceuticals. In: Roshchina VV, Narwal SS (eds) Cell diagnostics. Images biophysical and biochemical processes in allelopathy. Science, Plymouth, pp 127–146

    Google Scholar 

  • Burton CL, Chhabra SR, Swift S et al (2002) The Growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect Immun 70:5913–5923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buznikov GA (1967) Low molecular weight regulators in embryonic development. Nauka, Moscow, p 265

    Google Scholar 

  • Buznikov GA (1987) Neurotransmitters in embryogenesis. Nauka, Moscow, p 232

    Google Scholar 

  • Buznikov GA (1990) Neurotransmitters in embryogenesis. Harwood Academic, Chur, p 526

    Google Scholar 

  • Buznikov GA (2007) Preneuronal transmitters as regulators of embryogenesis. Current state of problem. Russ J Dev Biol (Ontogenesis) 38:262–270

    CAS  Google Scholar 

  • Buznikov GA, Shmukler YB, Lauder JM (1996) From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell Mol Neurobiol 16:537–559

    Article  CAS  PubMed  Google Scholar 

  • Calil CM, Oliveira GM, Cogo K et al (2014) Effects of stress hormones on the production of volatile sulfur compounds by periodontopathogenic bacteria. Braz Oral Res 28 (1): pii: S1806-83242014000100228. Epub 2014 June 11

    Google Scholar 

  • Cantiello HF (1997) Role of actin filaments organization in cell volume and ion channel regulation. J Exp Zool 279:425–435

    Article  CAS  PubMed  Google Scholar 

  • Changeux JP, Edelstein S (2005) Nicotinic acetylcholine receptors. Odile Jacob, New York

    Google Scholar 

  • Chet I, Henis Y, Mitchell R (1973) Effect of biogenic amines and cannabinoids on bacterial chemotaxis. J Bacteriol 115(3):1215–1218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Christophersen C (1991) Evolution in molecular structure and adaptive variance in metabolism. Comp Biochem Physiol B 98:427–443

    CAS  PubMed  Google Scholar 

  • Clarke G, Grenham S, Scully P et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673. doi:10.1038/mp.2012.77

    Article  CAS  PubMed  Google Scholar 

  • Clarke SC, McAllister Mk, Milner-Gullland EJ, Kirkwood GP, Michielsens CGJ, Agnew DJ, Pikitch EK, Nakano H, Shivji MS (2006) Global estimates of shark catches using trade records from commercial markets. Ecol Lett 9(10):1115–1126

    Article  PubMed  Google Scholar 

  • Clarke SF, Murphy EF, Nilaweera K, Ross PR, Shahahan F, O’Toole PW, Cotter PD (2012) The gut microbiota and its relationship to diet and obesity. Gut Microbes 3(3):186–202

    Google Scholar 

  • Clawson CC, Rao GHR, White JG (1975) Platelet interaction with bacteria. IV. Stimulation of the release reaction. Am J Pathol 81(2):411–420

    PubMed Central  CAS  PubMed  Google Scholar 

  • Corrado DMU, Politi H, Trielli F et al (1999) Evidence for the presence of a mammalian-like cholinesterase in Paramecium primaurelia (Protista Ciliophora) developmental cycle. J Exp Zool 283:102–105

    Article  CAS  Google Scholar 

  • Corrado DMU, Ballarini P, Falugi C (2001) Synthesis of the molecular acetylcholine during the developmental cycle of Paramecium primaurelia (Protista Ciliophora) and its possible function in conjugation. J Exp Biol 204:1901–1907

    CAS  Google Scholar 

  • Coulanges V, Andre P, Ziegler O et al (1997) Utilization of iron-catecholamine complexes involving ferric reductase activity in Listeria monocytogenes. Infect Immun 65:2778–2785

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cross SAM, Even SWB, Rost FWD (1971) A study of the methods available for the cytochemical localization of histamine by fluorescence induced with o-phthalaldehyde or acetaldehyde. Histochem J 3(6):471–476

    Article  CAS  PubMed  Google Scholar 

  • Csaba G (1980) Phylogeny and ontogeny of hormone receptors: the selection theory of receptor formation and hormonal imprinting. Biol Rev 55:47–63

    Article  CAS  PubMed  Google Scholar 

  • Csaba G, Muller WEG (1996) Signalling mechanisms in protozoa and invertebrates. Springer, Berlin

    Book  Google Scholar 

  • Dale H (1914) The actions of certain esters and esters of choline, and their relation to muscarine. Pharmacol Exp Ther 6:147–190

    CAS  Google Scholar 

  • Dall’Acqua S (2013) Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer’s disease. Bot Targets Ther 3:19–28

    Article  CAS  Google Scholar 

  • Devalia JL, Grady D, Harmanyeri Y et al (1989) Histamine synthesis by respiratory tract micro-organisms: possible role in pathogenicity. J Clin Pathol 42:516–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Di Sansebastiano GPD, Fonaciari S, Barozzi F et al (2014) New insights on plant cell elongation: role for acetylcholine. Int J Mol Sci 15:4565–4582. doi:10.3390/ijms15034565

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ekici K, Coskun H (2002) Histamine content of some commercial vegetable pickles. In: Proceedings of ICNP-2002—Trabzon, Turkey, pp 162–164

    Google Scholar 

  • Ekici K, Coskun H, Tarakci Z et al (2006) The contribution of herbs to the accumulation of histamine in “otlu” cheese. J Food Biochem 30:362–371

    Article  CAS  Google Scholar 

  • Evans DG, Miles AA, Niven JSF (1948) The enhancement of bacterial infections by adrenaline. Br J Exp Pathol 29:20–39

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ewins A (1914) Acetylcholine: a new active principle of ergot. Biochem J 8(1):44–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faust MA, Doetsch RN (1971) Effect of drugs that alter excitable membranes on the motility of Rhodospirillum rubrum, Thiospirillum rubrum and Thiospirillum jenense. Can J Microbiol 17:191–196

    Article  CAS  PubMed  Google Scholar 

  • Fernández M, del Río B, Linares DM et al (2006) Real-time polymerase chain reaction for quantitative detection of histamine-producing bacteria: use in cheese production. J Dairy Sci 89:3763–3769

    Article  PubMed  Google Scholar 

  • Fernstrom JD, Wurtman RJ (1971) Brain serotonin content: physiological dependence on plasma tryptophan levels. Science 173:149–152

    Article  CAS  PubMed  Google Scholar 

  • Filho JMB, Medeiros KCP, Diniz MFFM, Batista LM, Athayde-Filho PF, Silva MS, da-Cunho EVL, Almeida JRG, Quintans-Junior LJ (2006) Natural products inhibitors of the enzyme acetylcholinesterase. Braz J Pharmacogn 16(2):258–285

    Google Scholar 

  • Fitch WM (1963a) Studies on a cholinesterase of Pseudomonas fluorescens. I. Enzyme induction and the metabolism of acetylcholine. Biochemistry 2:1217–1221

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1963b) Studies on a cholinesterase of Pseudomonas fluorescens. II. Purification and properties. Biochemistry 2(6):1221–1227

    Article  CAS  PubMed  Google Scholar 

  • Fluck RA, Jaffe MJ (1974) The acetylcholine system in plants. In: Smith E (ed) Current advances in plant sciences, vol 5. Sciences Engineering Medical and Data Ltd, Oxford, pp 1–22

    Google Scholar 

  • Fluck RA, Leber PA, Lieser JD et al (2000) Choline conjugates of auxins. I. Direct evidence for the hydrolysis of choline-auxin conjugates by pea cholinesterase. Plant Physiol Biochem 38:301–308

    Article  CAS  Google Scholar 

  • Forsythe P, Kunze WA (2013) Voices from within: gut microbes and the CNS. Cell Mol Life Sci 70(1):55–69

    Article  CAS  PubMed  Google Scholar 

  • Forsythe P, Kunze WA, Bienenstock J (2012) On communication between gut microbes and the brain. Curr Opin Gastroenterol 28(6):557–562

    Article  PubMed  Google Scholar 

  • Fraikin GY, Strakhovskaya MG, Ivanova EV, Rubin AB (1989) Near-UV activation of enzymatic conversion of 5-hydroxytryphophan to serotonin. Photochem Photobiol 49:475–477

    Article  CAS  PubMed  Google Scholar 

  • Freestone PPE (2013) Communication between bacteria and their hosts. Scientifica 2013:361073, p 15. http://dx.doi.org/10.1155/2013/361073

  • Freestone PPE, Lyte M (2008) Microbial endocrinology: experimental design issues in the study of interkingdom signalling in infectious disease. Adv Appl Microbiol 64:75–105

    Article  CAS  PubMed  Google Scholar 

  • Freestone PPE, Sandrini S (2010) In: Lyte M, Freestone PPE (eds) Microbial endocrinology. Interkingdom signaling in infectious disease and health. Springer, New York, pp 17–52

    Google Scholar 

  • Freestone PPE, Haigh RD, Williams PH, Lyte M (1999) Stimulation of bacterial growth by heat-stable norepinephrine-induced autoinducers. FEMS Microbiol Lett 172:53–60

    Article  CAS  PubMed  Google Scholar 

  • Freestone PPE, Lyte M, Neal CP et al (2000) The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol 182:6091–6098

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freestone PPE, Haigh RD, Lyte M (2007) Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157: H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol 7:8–11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Freestone PPE, Sandrini SM, Haigh RD, Lyte M (2008a) Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 16:55–64

    Article  CAS  PubMed  Google Scholar 

  • Freestone PPE, Haigh RD, Lyte M (2008b) Catecholamine inotrope resuscitation of antibiotic-damaged staphylococci and its blockade by specific receptor antagonists. J Infect Dis 197:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Fryxell KJ, Meyerowitz EM (1991) The evolution of rhodopsins and neurotransmitter receptors. J Mol Evol 33:367–378

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Kawashima K (2001) The non-neuronal cholinergic system. An independent non-neuronal cholinergic system in lymphocytes. Jpn J Pharmacol 85(1):11–15

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara T, Maisonneuve S, Isshiki M et al (2010) Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem 285:11308–11313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gandía-Herrero F, Jiménez-Atiénzar M, Cabanes J et al (2009) Fluorescence detection of tyrosinase activity on dopamine-betaxanthin purified from Portulaca oleracea (common purslane) flowers. J Agric Food Chem 57(6):2523–2528

    Article  PubMed  CAS  Google Scholar 

  • Girvin GT, Stevenson JW (1954) Cell free “choline acetylase” from Lactobacillus plantarum. Can J Biochem Physiol 32:131–146

    Article  CAS  PubMed  Google Scholar 

  • Goldstein DB (1959) Induction of cholinesterase biosynthesis in Pseudomonas fluorescens. J Bacteriol 78:695–702

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldstein DB, Goldstein A (1953) An adaptive bacterial cholinesterase from Pseudomonas species. J Gen Microbiol 8:8–17

    Article  CAS  PubMed  Google Scholar 

  • Gong XO, Bisson MA (2002) Acetylcholine-activated Cl- channel in the Chara tonoplast. J Membr Biol 188:107–113

    Article  CAS  PubMed  Google Scholar 

  • Graziano TS, Closs P, Poppi T et al (2014) Catecholamines promote the expression of virulence and oxidative stress genes in Porphyromonas gingivalis. J Periodontal Res 49(5):660–669. doi:10.1111/jre.12148

    Article  CAS  PubMed  Google Scholar 

  • Gruchow HW (1979) Catecholamine activity and infectious disease episodes. J Human Stress 5:11

    Article  CAS  PubMed  Google Scholar 

  • Grebe TW, Stock J (1998) Bacterial chemotaxis: the five sensors of a bacterium. Curr Biol 8:R154–R157

    Article  CAS  PubMed  Google Scholar 

  • Guidotti BB, Gomes BR, Siqueira-Soares RD et al (2013) The effects of dopamine on root growth and enzyme activity in soybean seedlings. Plant Signal Behav 8, e25477

    Article  PubMed Central  PubMed  Google Scholar 

  • Gundersen RE, Thompson GA Jr (1985) Further studies of dopamine metabolism and function in Tetrahymena. J Eukaryot Microbiol 32:25–31

    CAS  Google Scholar 

  • Gupta A, Thakur SS, Uniyal PL, Gupta R (2001) A survey of Bryophytes for presence of cholinesterase activity. Am J Bot 88:2133–2135

    Article  CAS  PubMed  Google Scholar 

  • Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108(7):3047–3052. doi:10.1073/pnas.1010529108

    Article  PubMed Central  CAS  Google Scholar 

  • Heller I, Leitner S, Dierich MP, Lass-Flörl C (2004) Serotonin (5-HT) enhances the activity of amphotericin B against Aspergillus fumigatus in vitro. Int J Antimicrob Agents 24:401–404

    Article  CAS  PubMed  Google Scholar 

  • Hikino H, Ogata M, Konno C (1983) Structure of feruloylhistamine a hypotensive principle of Ephedra roots. Planta Med 48:108–109

    Article  CAS  PubMed  Google Scholar 

  • Holm RE, Miller MR (1972) Hormonal control of weed seed germination. Weed Science 20:209–219

    CAS  Google Scholar 

  • Hsu SC, Johansson KR, Donahue MJ (1986) The bacterial flora of the intestine of Ascaris suum and 5-hydroxytryptamine production. J Parasitol 72:545–549

    Article  CAS  PubMed  Google Scholar 

  • Imshenetskii AA, Popova LS, Kirilova NF (1974) Microorganisms decomposing acetylcholine. Microbiologiia (in Russian) 43(6):986–991

    CAS  Google Scholar 

  • Ishihara A, Hashimoto Y, Tanaka C et al (2008) The tryptophan pathway is involved in the defense responses of rice against pathogenic infection via serotonin production. Plant J 54(3):481–495

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Aravind L, Coon SL et al (2004) Evolution of cell–cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet 20(7):292–299

    Article  CAS  PubMed  Google Scholar 

  • Janakidevi K, Dewey VC, Kidder GW (1966a) Serotonin in protozoa. Arch Biochem Biophys 113:758–759

    Article  CAS  PubMed  Google Scholar 

  • Janakidevi K, Dewey VC, Kidder GW (1966b) The biosynthesis of catecholamines in two genera of Protozoa. J Biol Chem 241:2576–2578

    CAS  PubMed  Google Scholar 

  • Jaw YM, Chen YY, Lee YC et al (2012) Histamine content and isolation of histamine-forming bacteria in fish meal and fish soluble concentrate. Fish Sci 78(1):155

    Article  CAS  Google Scholar 

  • Just F, Walz B (1996) The effects of serotonin and dopamine on salivary secretion by isolated cockroach salivary glands. J Exp Biol 1999:407–413

    Google Scholar 

  • Kaeppel EC, Gärdes A, Seebah S et al (2012) Marinobacter adhaerens sp. nov. isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int J Syst Evol Microbiol 62:124–128

    Article  CAS  PubMed  Google Scholar 

  • Kagarlitskii GO, Kirovskaya TA, Oleskin AV (2003) The effects of neuromediator amines on the growth and respiration of microorganisms. In: Biopolytics, seminar of Biological Faculty of MGU, MGU, Moscow, pp 13–17

    Google Scholar 

  • Kamo KK, Mahlberg PG (1984) Dopamine biosynthesis at different stages of plant development in Papaver somniferum. J Nat Prod 47:682–686

    Article  CAS  PubMed  Google Scholar 

  • Kang K, Kim YS, Park S, Back K (2009) Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiol 150(3):1380–1393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang S, Kang K, Lee K, Back K (2007) Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Rep 26:2009–2015

    Article  CAS  PubMed  Google Scholar 

  • Kaprelyants AS, Kell DB (1996) Do bacteria need to communicate with each other for growth? Trends Microbiol 4:237–242

    Article  CAS  PubMed  Google Scholar 

  • Kaprelyants AS, Mukamolova GV, Kormer SS et al (1999) Intercellular signaling and the multiplication of prokaryotes: bacterial cytokines. In England RR (ed) Microbial signaling and communication. Society for General Microbiology Symposium, Edinburg 57, Cambridge University Press. Cambridge, pp 33–69

    Google Scholar 

  • Kawashima K, Misawa H, Moriwaki Y et al (2007) Ubiquitous expression of acetylcholine and its biological functions in life forms without nervous systems. Life Sci 80:2206–2209

    Article  CAS  PubMed  Google Scholar 

  • Lipps BV, Khan AA (2001) The presence of pharmacological substances myoglobin and histamine in venoms. J Venom Anim Toxins 7(1):45–55. doi:10.1590/S0104-79302001000100004

    Article  CAS  Google Scholar 

  • Kisnieriene V, Ditchenko TI, Kudryashov AP et al (2012) The effect of acetylcholine on Characeae K+ channels at rest and during action potential generation. Cent Eur J Biol 7(6):1066–1075

    CAS  Google Scholar 

  • Kondashevskaya MV, Lyapina LA, Smolina TY (1996) Complexes of high- and low-molecular heparin with serotonin and their physiological features. Vestn MGU Ser Biol 16:17–20

    Google Scholar 

  • Koshtoyantz ChS (1963) Problems of enzymochemistry of the processes of excitation and depression and evolution of the function of nervous system. 17th Bakh Lection (USSR), AN SSSR, Moscow, p 31

    Google Scholar 

  • Kovaleva LV, Roshchina VV (1997) Does cholinesterase participate in the intercellular interaction in pollen-pistil system? Biol Plant 39(2):207–213

    Article  CAS  Google Scholar 

  • Kozlov GS (1972) Changes in the blood and tissue histamine content in rabbits when sensitized with streptococci combined with heart muscle extract. Bull Exp Biol Med 74:1028–1029

    Google Scholar 

  • Kruk ZL, Pycock CJ (1990) Neurotransmitters and drugs. Chapman & Hall, New York

    Google Scholar 

  • Kuklin AI, Conger BV (1995) Catecholamines in plants. J Plant Growth Regul 14:91–97

    Article  CAS  Google Scholar 

  • Kulma A, Szopa J (2007) Catecholamines are active compounds in plant. Plant Sci 172:433–440

    Article  CAS  Google Scholar 

  • Kung HF, Tsai YH, Wei CI (2007) Histamine and other biogenic amines and histamine-forming bacteria in miso products. Food Chem 101:351–356

    Article  CAS  Google Scholar 

  • Kurt AG, Aytan E, Oze U, Ates B, Geckil H (2009) Production of L-DOPA and dopamine in recombinant bacteria bearing the Vitreoscilla hemoglobin gene. Biotechnol J 4(7):1077–1088

    Article  CAS  PubMed  Google Scholar 

  • Laing AC, Miller HR, Bricknell KS (1967) Purification and properties of the inducible cholinesterase of Pseudomonas fluorescence (Goldstein). Can J Biochem 45:1711–1724

    Article  CAS  PubMed  Google Scholar 

  • Laing AC, Miller HR, Patterson KM (1969) Purification of bacterial cholinesterase. Can J Biochem 47:219–220

    Article  CAS  PubMed  Google Scholar 

  • Landete JM, Ferrer S, Pardo I (2005) Which lactic acid bacteria are responsible for histamine production in wine? J Appl Microbiol 99:580–586

    Article  CAS  PubMed  Google Scholar 

  • Lanter B, Sauer K, Davies DG (2014) Bacteria present in carotid arterial plaques are found as biofilm deposit which may contribute to enhanced risk of plaque rupture. mBio 5:e01206–e01214

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lauder JM, Schambra UB (1999) Morphogenetic roles of acetylcholine. Environmental health perspectives. Rev Environ Health 107(suppl 1):65–69

    CAS  Google Scholar 

  • Lawal HO, Krantz DE (2013) SLC18: vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol Aspects Med 34(2–3):360–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lawrence SA (2004) Amines: synthesis properties and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Le Novere N, Changeux JP (1995) Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol 40:155–172

    Article  PubMed  Google Scholar 

  • Lenard J (1992) Mammalian hormones in microbial cells. Trends Biochem Sci 17:147–150

    Article  CAS  PubMed  Google Scholar 

  • Leng Q, Hua B, Guo Y, Lou C (2000) Regulating role of acetylcholine and its antagonists in inward rectified K+ channels from guard cells protoplasts of Vicia faba. Sci China Ser C Life Sci 43(2):217–224

    Article  CAS  Google Scholar 

  • Lesouhaitier O, Veron W, Chapalain A et al (2009) Gram-negative bacterial sensors for eukaryotic signal molecules. Sensors 9:6967–6990. doi:10.3390/s90906967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li L, Xu Z, Zhou Y, Sun L et al (2012) Global effects of catecholamines on Actinobacillus pleuropneumoniae gene expression. PLoS One 7(2), e31121. doi:10.1371/journal.pone.0031121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu G, DeLisle AJ, de Vetten NC, Ferl RJ (1992) Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex. Proc Natl Acad Sci U S A 89:11490–11494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luedtke RR, Freeman RA, Volk M et al (2003) Pharmacological survey of medicinal plants for activity at dopamine receptor subtypes. II. Screen for binding activity at the D1 and D2 dopamine receptor subtypes. Pharm Biol 41:45–58

    Article  Google Scholar 

  • Lyte M (1992) The role of microbial endocrinology in infection disease. J Endocrinol 137:343–345

    Article  Google Scholar 

  • Lyte M (2004) Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol 12:14–20

    Article  CAS  PubMed  Google Scholar 

  • Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 33(8):574–581

    Article  CAS  PubMed  Google Scholar 

  • Lyte M (2013) Microbial endocrinology: an evolution-based shared mechanism determining microbiota’s influence on health and disease. In: Hartmann G, Wagner H (eds) Innate immunity: resistance and disease-promoting principles, vol 4, Else Kröner-Fresenius Symposia. Karger, Basel, pp 53–58

    Chapter  Google Scholar 

  • Lyte M, Bailey MT (1997) Neuroendocrine-bacterial interactions in neurotoxin-induced model of trauma. J Surg Res 70:195–201

    Article  CAS  PubMed  Google Scholar 

  • Lyte M, Ernst S (1992) Catecholamine induced growth of gram-negative bacteria. Life Sci 50:203–212

    Article  CAS  PubMed  Google Scholar 

  • Lyte M, Ernst S (1993) Alpha and beta-adrenergic receptor involvement in catecholamine-induced growth of gram-negative bacteria. Biochem Biophys Res Commun 190:447–452

    Article  CAS  PubMed  Google Scholar 

  • Lyte M, Frank D, Green BT (1996) Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157: H7. FEMS Microbiol Lett 139:155–159

    Article  CAS  PubMed  Google Scholar 

  • Lyte M, Arulanandam B, Nguyen K et al (1997) Norepinephrine induced growth and expression of virulence associated factors in enterotoxigenic and enterohemorrhagic strains of Escherichia coli. Adv Exp Med Biol 412:331–339

    Article  CAS  PubMed  Google Scholar 

  • Ly D, Kang K, Choi JY et al (2008) HPLC analysis of serotonin tryptamine tyramine and the hydroxycinnamic acid amides of serotonin and tyramine in food vegetables. J Med Food 11(2):385–389

    Article  CAS  PubMed  Google Scholar 

  • Malikina KD, Shishov VA, Chuvelev DI et al (2010) Regulatory role of monoamine neurotransmitters in Saccharomyces cerevisiae cells. Appl Biochem Microbiol 46(6):672–677

    Article  CAS  Google Scholar 

  • Marg S, Walz B, Blenau W (2004) The effects of dopamine receptor agonists and antagonists on the secretory rate of cockroach (Periplaneta americana) salivary glands. J Insect Physiol 50(9):821–830.

    Article  CAS  PubMed  Google Scholar 

  • Markova LN, Buznikov GA, Kovačević N et al (1985) Histochemical study of biogenic monoamines in early (“Prenervous”) and late embryos of sea urchins. Int J Dev Neurosci 3(5):493–499

    Article  CAS  PubMed  Google Scholar 

  • Marquardt P, Falk H (1957) Vorkommen und Syntheses von Acetylcholine in Pflanzen and Bakterien. Arzneimittelforschung 7:203–211

    CAS  PubMed  Google Scholar 

  • Marquardt P, Spitznagel G (1959) Bakterielle Acetylcholine Bildung in Kunstlichen Nahrboden. Arzneimittelforschung 9:456–465

    CAS  PubMed  Google Scholar 

  • Martín MC, Fernández M, Linares DM, Alvarez MA (2005) Sequencing characterization and transcriptional analysis of the histidine decarboxylase operon of Lactobacillus buchneri. Microbiology 151:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Mayr A, Hinterberger G, Dierich MP, Lass-Flöri C (2005) Interaction serotonin with Candida albicans selectively attenuates fungal virulence in vitro. Int J Antimicrob Agents 26(4):335–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Megaw MWJ, Robertson HA (1974) Dopamine and noradrenaline in the salivary glands and brain of the tick Boophilus microplus: effect of reserpine. Cell Mol Life Sci 30:1261–1262

    Article  CAS  Google Scholar 

  • Meng F, Liu X, Zhang S, Lou C (2001) Localization of muscarinic acetylcholine receptor in plant guard cells. Chin Sci Bull 46:586–589

    Article  CAS  Google Scholar 

  • Meng F, Miao L, Zhang S, Lou C (2004) Ca2+ is involved in muscarine acetylcholine receptor-mediated acetylcholine signal transduction in guard cells of Vicia faba. Chin Sci Bull 49(5):471–475

    CAS  Google Scholar 

  • Mohapatra BR, Bapujr M (1998) Characterization of acetylcholinesterase from Arthrobacter ilicis associated with the marine sponge. J Appl Microbiol 84(3):393–398

    Article  CAS  Google Scholar 

  • Momonoki YS (1997) Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings. Plant Physiol 114:47–53

    PubMed Central  CAS  PubMed  Google Scholar 

  • Muralidharan M, Buss K, Larrimore KE et al (2013) The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase. Plant Mol Biol 81(6):565–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murch SJ (2006) Neurotransmitters neuroregulators and neurotoxins in plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants—neuronal aspects of plant life. Springer, Berlin, pp 137–151

    Google Scholar 

  • Nachmansohn D, Machado AL (1943) The formation of acetylcholine. A new enzyme “choline acetylase”. J Neurophysiol 6:397–403

    CAS  Google Scholar 

  • Neal CP, Freestone PPE, Maggs AF et al (2001) Catecholamine inotropes as growth factors for Staphylococcus epidermidis and other coagulase-negative staphylococci. FEMS Microbiol Lett 194:163–169

    Article  CAS  PubMed  Google Scholar 

  • Nelson T, Lee D, Smith B (2003) Are ‘green tides’ harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae Ulva fenestrate and Ulvaria obscura (Ulvophyceae). J Phycol 39:874–879

    Article  CAS  Google Scholar 

  • Oleskin AV (2007) Biopolitics. Nauchnii MiR, Moscow, p 508

    Google Scholar 

  • Oleskin AV (2012) Biopolytics. The political potential of life sciences. Nova Science, New York

    Google Scholar 

  • Oleskin AV, Kirovskaya TA (2006) Research on population organization and communication in microorganisms. Microbiology (Russia) 75:440–445

    CAS  Google Scholar 

  • Oleskin AV, Kirovskaya TA, Botvinko IV, Lysak LV (1998a) Effects of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms. Microbiology (Russia) 67:305–312

    CAS  Google Scholar 

  • Oleskin AV, Botvinko IV, Kirovskaya TA (1998b) Microbial endocrinology and biopolytics. Vestn Mosc Univ Ser Biol 4:3–10

    Google Scholar 

  • Oleskin AV, Botvinko IV, Tsavkelova EA (2000) Colonial organization and intercellular communication of microorganisms. Microbiology (Russia) 69:309–327

    CAS  Google Scholar 

  • Oleskin AV, Shishov VI, Malikina KD (2010) Symbiotic biofilms and brain neurochemistry. Nova Science, New York, p 58

    Google Scholar 

  • Oleskin AV, Zagryadskaya Yu A, Lisak LV (2013) Effects of biogenic amines on the interactions of fungal hyphae and bacteria. In: Zinchenko VP, Berezhnov AV (eds) Reception and intracellular signalling. Emma, Pushchino, pp 770–775

    Google Scholar 

  • Park JP, Choi MJ, Kim SH et al (2014) Surface display of an adhesive catecholamine moiety. Appl Environ Microbiol 80(1):43–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park S, Kang K, Lee SW et al (2011) Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli. Appl Microbiol Biotechnol 89:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Pelagio-Florez R, Ortiz-Castro R, Mendez-Bravo A et al (2011) Serotonin a tryptophan-derived signal conserved in plants and animals regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol 52:490–508

    Article  CAS  Google Scholar 

  • Pandey S, Sree A, Sethi DP et al (2014) A marine sponge associated strain of Bacillus subtilis and other marine bacteria can produce anticholinesterase compounds. Microb Cell Fact 13(1):24. doi:10.1186/1475-2859-13-24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pavlov VA, Wang H, Cruza CJ et al (2003) The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol Med 9(5–8):125–128

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pershin GN, Nesvadba VV (1963) A study of monoamino oxidase activity in mycobacteria. Bull Exp Biol Med 56:81–84

    Article  CAS  Google Scholar 

  • Pertseva MN (1989) Molecular base of the development of the hormone-competency. Nauka, Leningrad, p 310

    Google Scholar 

  • Pertseva MN (1990a) The path of the evolution of the hormonal signal realization system. Sechenov Physiol J USSR 76:1126–1137

    CAS  Google Scholar 

  • Pertseva MN (1990b) Is the evolution similarity between chemosignalling systems of eukaryotes and prokaryotes? J Evol Biochem Physiol (Russia) 26:505–513

    CAS  Google Scholar 

  • Polacheck I, Platt Y, Aronovitch J (1990) Catecholamines and virulence of Cryptococcus neoformans. Infect Immun 58:2919–2922

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ponchet M, Martin-Tanguy J, Marais A, Martin C (1982) Hydroxycinnamoyl acid amides and aromatic amines in the inflorescences of some Araceae species. Phytochemistry 21:2865–2869

    Article  CAS  Google Scholar 

  • Posmyk MM, Janas KM (2009) Melatonin in plants. Acta Physiol Plant 31:1–11

    Article  CAS  Google Scholar 

  • Ramakrishna A, Giridhar P, Ravishankar GA (2011) Phytoserotonin. Plant Signal Behav 6(6):800–809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramakrishna A, Giridhar P, Sankar KU, Ravishankar GA (2012a) Endogenous profiles of indoleamines: serotonin and melatonin in different tissues of Coffea canephora P ex Fr. as analyzed by HPLC and LC-MS-ESI. Acta Physiol Plant 34(1):393–396

    Article  CAS  Google Scholar 

  • Ramakrishna A, Giridhar P, Jobin M et al (2012b) Indoleamines and calcium enhance somatic embryogenesis in Coffea canephora P ex Fr. Plant Cell Tiss Org Cult 108(2):267–278

    Article  CAS  Google Scholar 

  • Rejơn JD, Zgnieszka A, Rodriguez-Garcia MI, Castro AJ (2012) Profiling and functional classification of esterases in olive (Olea europaea) pollen during germination. Ann Bot 110:1035–1045

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rijkers GT, de Vos WM, Brummer RJ et al (2011) Health benefits and health claims of probiotics: bridging science and marketing. Br J Nutr 106(9):1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Roberts A, Matthews JB, Socransky SS et al (2002) Stress and the periodontal diseases: effects of catecholamines on the growth of periodontal bacteria in vitro. Oral Microbiol Immunol 17:296–303

    Article  CAS  PubMed  Google Scholar 

  • Romanovskaya MG, Popenenkova ZA (1971) Effect of vetrazine chloracizine and chlorpromazine on histamine and serotonin content in organs of rabbits with Bacterium prodigiosum bacteriemia. Bull Exp Biol Med 71:520–522

    Article  Google Scholar 

  • Roshchina VV (1989) Biomediators in chloroplasts of higher plants. I. The interaction with photosynthetic membranes. Photosynthetica 23:197–206

    CAS  Google Scholar 

  • Roshchina VV (1990a) Biomediators in chloroplasts of higher plants. 3. Effect of dopamine on photochemical activity. Photosynthetica 24:117–121

    Article  CAS  Google Scholar 

  • Roshchina VV (1990b) Biomediators in chloroplasts of higher plants. 4. Reception by photosynthetic membranes. Photosynthetica 24:539–549

    CAS  Google Scholar 

  • Roshchina VV (1991) Biomediators in plants. Acetylcholine and biogenic amines. Biological Center of USSR Academy of Sciences, Pushchino, p 192

    Google Scholar 

  • Roshchina VV (1992) The action of neurotransmitters on the seed germination. Biologicheskie Nauki 9:124–129

    Google Scholar 

  • Roshchina VV (2001a) Neurotransmitters in plant life. Science, Plymouth, p 283

    Google Scholar 

  • Roshchina VV (2001b) Molecular-cellular mechanisms in pollen allelopathy. Allellopathy J 8:3–25

    Google Scholar 

  • Roshchina VV (2004) Cellular models to study the allelopathic mechanisms. Allelopathy J 13:3–16

    Google Scholar 

  • Roshchina VV (2005a) Contractile proteins in chemical signal transduction in plant microspores. Biol Bull 32:281–286

    Article  CAS  Google Scholar 

  • Roshchina VV (2005b) Allelochemicals as fluorescent markers dyes and probes. Allelopathy J 16:31–46

    Google Scholar 

  • Roshchina VV (2006a) Chemosignaling in plant microspore cells. Biol Bull 33:414–420

    Article  CAS  Google Scholar 

  • Roshchina VV (2006b) Plant microspores as biosensors. Trends Mod Biol (Russia) 126:262–274

    Google Scholar 

  • Roshchina VV (2007) Cellular models as biosensors. In: Roshchina VV, Narwal SS (eds) Cell diagnostics: images biophysical and biochemical processes in allelopathy. Science, Plymouth, pp 5–22

    Google Scholar 

  • Roshchina VV (2008) Fluorescing world of plant secreting cells. Science, Plymouth, p 338

    Google Scholar 

  • Roshchina VV (2009) Effects of proteins oxidants and antioxidants on germination of plant microspores. Allelopathy J 23(1):37–50

    Google Scholar 

  • Roshchina VV (2010) Chapter 2. Evolutionary сonsiderations of neurotransmitters in microbial plant and animal cells. In: Lyte M, Freestone PPE (eds) Microbial endocrinology. Interkingdom signaling in infectious disease and health. Springer, New York, pp 17–52

    Google Scholar 

  • Roshchina VV (2014) Model systems to study excretory function of higher plants. Springer, Berlin, p 220

    Google Scholar 

  • Roshchina VV, Alexandrova IP (1991) Enzyme from fungus Aspergillus niger which hydrolyzed cholinic esters. Biologicheskie Nauki (USSR) 12:50–54

    Google Scholar 

  • Roshchina VV, Roshchina VD (1993) The excretory function of higher plants. Springer, Berlin, p 314

    Book  Google Scholar 

  • Roshchina VV, Semenova MN (1990) Plant cholinesterases: activity and substrate-inhibitory specificity. J Evol Biochem Physio (USSR) 26:644–651

    CAS  Google Scholar 

  • Roshchina VV, Vikhlyantsev IM (2009) Mechanisms of chemosignalling in allelopathy: role of Ion channels and cytoskeleton in development of plant microspores. Allelopathy J 23(1):25–36

    Google Scholar 

  • Roshchina VV, Vikhlyantsev IM (2012) Bioactivity of exogenous cytoskeleton proteins: regulation of development of plant microspores as biosensors. Curr Bioact Compd 8(3):287–290

    Article  CAS  Google Scholar 

  • Roshchina VV, Melnikova EV, Kovaleva LV, Spiridonov NA (1994) Cholinesterase of pollen grains. Dokl Biol Sci 337:424–427

    CAS  Google Scholar 

  • Roshchina VV, Bezuglov VV, Markova IN et al (2003) Interaction of living cells with fluorescent derivatives of biogenic amines. Dokl Russ Acad Sci 393:832–835

    Google Scholar 

  • Roshchina VV, Yashin VA, Vikhlyantsev IM (2012) Fluorescence of plant microspores as biosensors. Biochemistry (Moscow), Suppl ser A: Membr Cell Biol 6(1): 105–112 (Biol Membr 28 (6): 547–556)

    Google Scholar 

  • Roshchina VV, Yashin VA (2014) Neurotransmitters catecholamines and histamine in allelopathy: Plant cells as models in fluorescence microscopy. Allelopathy J 34(1):1–16

    Google Scholar 

  • Roshchina VV, Yashin VA, Kuchin AV, Kulakov VI (2014) Fluorescent analysis of catecholamines and histamine in plant single cells. Intl J Biochem 195:344–351

    Google Scholar 

  • Roshchina VV, Yashin VA, Kuchin AV (2015a) Fluorescent analysis for bioindication of ozone on unicellular models. J Fluoresc 25(3):595–601. doi:10.1007/s10895-015-1540-2

    Article  CAS  PubMed  Google Scholar 

  • Roshchina VV, Yashin VA, Kuchin AV (2015b) Fluorescence in the study of neurotransmitters in plant cells. In: Zinchenko VP, Berezhnov AV (eds) Reception and Intracellular Signaling. Vol 1. Pushchino, Fix-Print, pp. 364–369

    Google Scholar 

  • Rowatt E (1948) The relation of pantothenic acid to acetylcholine formation by a strain of Lactobacillus plantarum. J Gen Microbiol 2:25–30

    Article  CAS  Google Scholar 

  • Sagane Y, Nakagawa T, Yamamoto K et al (2005) Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol 138:1359–1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sandrini S, Alghofaili F, Freestone P, Yesilkaya H (2014) Host stress hormone norepinephrine stimulates pneumococcal growth biofilm formation and virulence gene expression. BMC Microbiol 14(1):180. doi:10.1186/1471-2180-14-180

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmeller T, Latz-Brüning B, Wink M (1997) Biochemical activities of berberine palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 44:257–266

    Article  CAS  PubMed  Google Scholar 

  • Searle BW, Goldstein A (1957) Neostigmine resistance in a cholinesterase-containing Pseudomonas: a model for the study of acquired drug resistance. J Pharmacol Exp Ther 119:182

    Google Scholar 

  • Searle BW, Goldstein A (1962) Mutation to neostigmine resistance in a cholinesterase-containing Pseudomonas. J Bacteriol 83:789–796

    PubMed Central  CAS  PubMed  Google Scholar 

  • Segonzac C, Zipfel C (2011) Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol 14(1):54–61

    Article  CAS  PubMed  Google Scholar 

  • Shishov VA (2010) Biogenic amines in dynamics of microorganisms’ growth. Ph.D. Theses, Moscow State University, Moscow, p 27

    Google Scholar 

  • Shishov VA, Kirovskaya TA, Kudrin VS, Oleskin AV (2009) Neuromediator amines their precursors and products of oxidation in biomass and culture supernatant of Escherichia coli K-12. Appl Biochem Microbiol 45(5):550–554

    Article  CAS  Google Scholar 

  • Shmukler YB, Tosti E, Silvestre F (2007) Effect of local microapplication of serotoninergic drugs on membrane currents of Paracentrotus lividus early embryos. Russ J Dev Biol (Ontogenesis) 38:254–261

    Google Scholar 

  • Silla Santos MH (1996) Biogenic amines: their importance in foods. Int J Food Micobiol 29(2–3):213–231

    Article  CAS  Google Scholar 

  • Skirycz A, Swiedrych A, Szopa J (2005) Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism. BMC Plant Biol 5:1–15

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Small DH, Michaelson S, Sberna G (1996) Non-classical actions of cholinesterases: role in cellular differentiation tumorigenesis and Alzheimer’s disease. Neurochem Int 28(5):453–483

    Article  CAS  PubMed  Google Scholar 

  • Staleva L, Hall A, Orlow SJ (2004) Oxidative stress activates FUS1 and RLM1 transcription in the yeast Saccharomyces cerevisiae in an oxidant-dependent manner. Mol Biol Cell 15(12):5574–5582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stephenson M, Rowatt E, with participation of Harrison K in addendum. (1947) The production of acetylcholine by a strain of Lactobacillus plantarum. J Gen Microbiol 1: 279–298

    Google Scholar 

  • Strakhovskaya MG, Belenikina NS, Fraikin GY (1991) Yeast growth activation by UV light in the range of 280–380 nm. Microbiology (Russia) 60:292–297

    CAS  Google Scholar 

  • Strakhovskaya MG, Ivanova EV, Fraikin GY (1993) Stimulatory effect of serotonin on the growth of the yeast Candida guilliermondii and the bacterium Streptococcus faecalis. Microbiology (Russia) 62:46–49

    CAS  Google Scholar 

  • Suo S, Ishiura S (2013) Dopamine modulates acetylcholine release via octopamine and CREB signaling in Caenorhabditis elegans. PLoS One. Aug 16. doi:10.1371/journal.pone.0072578

    Google Scholar 

  • Swanson RL, Williamson JE, DeNys R et al (2004) Induction of settlement of larvae of the sea urchin Holopneustes purpurascens by histamine from a host algae. Biol Bull 206:161–172

    Article  CAS  PubMed  Google Scholar 

  • Swanson RL, Marshall DJ, Steinberg PD (2007) Larval desperation and histamine: how simple responses can lead to complex changes in larval behaviour. J Exp Biol 210:3228–3235

    Article  CAS  PubMed  Google Scholar 

  • Swiedrych A, Kukuła KL, Skirycz A, Szopa J (2004) The catecholamine biosynthesis route in potato is affected by stress. Plant Physiol Biochem 42:593–600

    Article  CAS  PubMed  Google Scholar 

  • Szewczyk NJ, Hartman JJ, Barmada SJ, Jacobso LA (2000) Genetic defects in acetylcholine signalling promote protein degradation in muscle cells of Caenorhabditis elegans. J Cell Sci 133:2003–2010

    Google Scholar 

  • Szopa J, Wilczynski G, Fiehn O et al (2001) Identification and quantification of catecholamines in potato plants (Solanum tuberosum) by GC-MS. Phytochemistry 58:315–320

    Article  CAS  PubMed  Google Scholar 

  • Takenaka Y, Roh JH, Suzuki H et al (1997) Metal ionic induction: expression of monoamine oxidase gene of Escherichia coli is induced by copper ion. J Ferment Bioeng 83:194–196

    Article  CAS  Google Scholar 

  • Taylor SL, Leatherwood M, Cieber ER (1978) Histamine in sauerkraut. J Food Sci 43:1030–1032

    Article  CAS  Google Scholar 

  • Tezuka T, Akita I, Yoshino N, Suzuki Y (2007) Regulation of self-incompatibility by acetylcholine and cAMP in Lilium longiflorum. J Plant Physiol 164:878–885

    Article  CAS  PubMed  Google Scholar 

  • Tretyn A, Kopcewicz J, Slezak E (1988) Interaction of light and the cholinergic system in the regulation of seed germination. Biologia Plantarum 30:338–342

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV (2000) Detection of neurotransmitter amines in microorganisms using of high performance liquid chromatography. Dokl Biochem 372:115–117 (in Russian issue 840–842)

    CAS  PubMed  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Hormones and hormone-like substances of microorganisms: a review. Appl Biochem Microbiol (Russia) 42:229–235

    Article  CAS  Google Scholar 

  • van Alstyne KL, Nelson AV, Vyvyan JR, Cancilla DA (2006) Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura. Oecologia 148:304–311

    Article  PubMed  Google Scholar 

  • van Alstyne KL, Anderson K, Winans A (2011) Dopamine release by the green alga Ulvaria obscura after simulated immersion by incoming tides. Mar Biol 158:2087–2094. doi:10.1007/s00227-011-1716-5

    Article  CAS  Google Scholar 

  • van Alstyne KL, Anderson KJ, van Hees DH, Gifford SA (2013) Dopamine release by Ulvaria obscura (Chlorophyta): environmental triggers and impacts on photosynthesis growth and survival of the releaser. J Phycol. doi:10.1111/jpy.12081

    Google Scholar 

  • van Alstyne KL, Harvey EL, Cataldo M (2014) Effects of dopamine a compound released by the green-tide macroalga Ulvaria obscura (Chlorophyta), on marine algae and invertebrate larvae and juveniles. Phycologia 53(2):195–202

    Article  CAS  Google Scholar 

  • Vardy E, Steiner-Mordoch S, Schuldiner S (2005) Characterization of bacterial drug antiporters homologous to mammalian neurotransmitter transporters. J Bacteriol 187:7518–7525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volkov AG, Carrell H, Baldwin A, Markin VS (2009) Electrical memory in Venus flytrap. Bioelectrochemistry 74(1):23–28

    Google Scholar 

  • Wake G, Court J, Pickering A et al (2000) CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J Ethnopharmacol 69:105–114

    Article  CAS  PubMed  Google Scholar 

  • Wimalasena K (2011) Vesicular monoamine transporters: structure-function pharmacology, and medicinal chemistry. Med Res Rev 31(4):483–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Wang X, Zhang S, Lou C (1998) Nicotinic acetylcholine receptor is involved in acetylcholine regulating of stomatal movement. Sci China C Life Sci 41:650–656

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang X, Lou C (1999a) Relationship between acetylcholine and stomatal movement. Acta Bot Sin 41:171–175

    CAS  Google Scholar 

  • Wang H, Wang X, Zhang S (1999b) Extensive distribution of acetylcholinesterase in guard cells of Vicia faba. Acta Bot Sin 41:364–367

    CAS  Google Scholar 

  • Wang H, Wan X, Zhang S, Lou C (2000) Muscarinic acetylcholine receptor involved in acetylcholine regulating of stomatal function. Chin Sci Bull 45:250–252

    Article  CAS  Google Scholar 

  • Wang H, Zhang S, Wang X, Lou C (2003a) Involvement of Ca2+/Ca in the signal transduction of acetylcholine-regulating stomatal movement. Chin Sci Bull 48:351–354

    Article  CAS  Google Scholar 

  • Wang H, Zhang S, Wang X, Lou C (2003b) Role of acetylcholine on plant root-shoot signal transduction. Chin Sci Bull 48:570–573

    Article  CAS  Google Scholar 

  • Wang HB, Chen WH, Li XS et al (2013) Isolation and identification of Marinobacter adhaerens HY-3 and its allelopathy on Skeletonema costatum. Huan Jing Ke Xue 34(1):145–149

    PubMed  Google Scholar 

  • Werle E, Pechmann E (1949) Über die Diamin-oxydase der Pflanzen und ihre adaptativeBildung durch Bakterien. Liebigs Ann Chem 562:44–60

    Article  CAS  Google Scholar 

  • Werle E, Raub A (1948) Über Vorkommen Bildung und Abbau biogener Amine bei Pflanzen unter besonderer Beruck-sichtigung des Histamins. Biochem Z 318:538–553

    CAS  PubMed  Google Scholar 

  • Wessler I, Kilbinger H, Bittinger F, Kirkpatrick CJ (2001) The non-neuronal cholinergic system: the biological role of non-neuronal acetylcholine in plants and humans. Jpn J Pharmacol 85:2–10

    Article  CAS  PubMed  Google Scholar 

  • Wisniewska J, Tretyn A (2003) Acetylcholinesterase activity in Lycopersicon esculentum and its phytochrome mutants. Plant Physiol Biochem 41:711–717

    Article  CAS  Google Scholar 

  • Yagodina OV, Nikol’skaya EB, Shemarova IY, Khovanskikh AE (2000) Amine oxidase in unicellular microorganisms Methanosarcina barkeri and Tetrahymena pyriformis. J Evol Biochem Physiol (Russia) 36:244–248

    Article  CAS  Google Scholar 

  • Yamaguchi H, Friedman H, Yamamoto Y (2003) Involvement of nicotinic acetylcholine receptors in controlling Chlamydia pneumoniae growth in epithelial HEp-2 Cells. Infect Immun 71(6):3645–3647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto H, Shimizu K, Tachibana A, Fusetani N (1999) Roles of dopamine and serotonin in larval attachment of the barnacle Balanus amphitrite. J Exp Zool 284:746–758

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Momonoki YS (2012) Tissue localization of maize acetylcholinesterase associated with heat tolerance in plants. Plant Signal Behav 7(3):301–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto K, Sakamoto H, Momonoki YS (2011) Maize acetylcholinesterase is a positive regulator of heat tolerance in plants. J Plant Physiol 168:1987–1992

    Article  CAS  PubMed  Google Scholar 

  • Yao WD, Rusch J, Poo M, Wu CF (2000) Spontaneous acetylcholine secretion from developing growth cones of Drosophila central neurons in culture: effects of cAMP-pathway mutations. J Neurosci 20:2626–2637

    CAS  PubMed  Google Scholar 

  • Zhirnova NS, Lyubovtseva LA, Gur’yanova EA, Mulendeev SV (2007) Luminescence histochemical study of histamine in the skin structures after the treatment with hyaluronic acid. Vestnik Orenburg State University 6:109–117

    Google Scholar 

  • Zholkevich VN, Aniskin DN, Dustmamatov AG (2003) On the stimulatory effect of neuromediators on the root pumping activity. Dokl Biol Sci 392:419–421

    Article  CAS  PubMed  Google Scholar 

  • Zholkevich VN, Zhukovskaya NV, Popova MS (2007a) Participation of protein kinases and protein phosphatases in signal transduction at the stimulatory effect of neuromediators on the root pumping activity. Russ J Plant Physiol 54(4):550–554

    Article  CAS  Google Scholar 

  • Zholkevich VN, Zhukovskaya NV, Popova MS (2007b) Stimulatory effects of adrenaline and noradrenaline on the root pumping activity. Russ J Plant Physiol 54(6):885–892

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria V. Roshchina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Roshchina, V.V. (2016). New Trends and Perspectives in the Evolution of Neurotransmitters in Microbial, Plant, and Animal Cells. In: Lyte, M. (eds) Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Advances in Experimental Medicine and Biology(), vol 874. Springer, Cham. https://doi.org/10.1007/978-3-319-20215-0_2

Download citation

Publish with us

Policies and ethics