Skip to main content

Reconstruction of Wall Shear-Stress Fluctuations in a Shallow Tidal River

  • Conference paper
  • First Online:
Progress in Wall Turbulence 2

Part of the book series: ERCOFTAC Series ((ERCO,volume 23))

  • 1283 Accesses

Abstract

In this paper, we investigate the applicability of the predictive wall shear-stress model, recently developed by Mathis et al. J. Fluid Mech. 715, 163–180, 2013, [17], to environmental flows where near-wall information is typically inaccessible. This wall-model, which embeds the scale interaction mechanisms of superposition and modulation, is able to reconstruct the instantaneous wall (bed) shear-stress fluctuations in turbulent boundary layers. The database considered here comes from field measurements using acoustic Doppler velocimeters carried out in a shallow tidal channel (Suisun Slough in North San Francisco Bay). The model is first applied to a selected subset of data sharing common properties with the canonical turbulent boundary layer. Statistics and energy content of these predictions are found to be consistent with laboratory predictions and DNS results. The model is then used on the whole dataset, whose some of them having properties far from the canonical case. Even for these situations, the model is able to preserve the overall Reynolds trend. This study shows the great capability of the model for environmental applications, which is the only one able to predict both the correct energetic content and probability density function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. del Álamo, J. Jiménez, Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15(6), L41–L44 (2003). doi:10.1063/1.1570830

    Article  Google Scholar 

  2. P.R. Bandyopadhyay, A.K.M.F. Hussain, The coupling between scales in shear flows. Phys. Fluids 27(9), 2221–2228 (1984)

    Article  Google Scholar 

  3. O. Cabrit, R. Mathis, I. Marusic, Towards a statistically accurate wall-model for large-eddy simulation, in ed. by P. Brandner, B. Pearce 18th Australasian Fluid Mechanics Conference (Australasian Fluid Mechanics Society, Launceston, Australia, 2012)

    Google Scholar 

  4. D.B. DeGraaff, J.K. Eaton, Reynolds number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319–346 (2000)

    Article  MATH  Google Scholar 

  5. D. Dennis, T. Nickels, Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218–244 (2011)

    Article  MATH  Google Scholar 

  6. W.D. Grant, O.S. Madsen, The continental-shelf bottom boundary layer. Annu. Rev. Fluid Mech. 18, 265–305 (1986)

    Article  MathSciNet  Google Scholar 

  7. N. Hutchins, I. Marusic, Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007). doi:10.1017/S0022112006003946

    Article  MATH  Google Scholar 

  8. N. Hutchins, I. Marusic, Large-scale influences in near-wall turbulence. Philos. Trans. R. Soc. Lond. A 365, 647–664 (2007). doi:10.1098/rsta.2006.1942

    Article  MATH  Google Scholar 

  9. N. Hutchins, T. Nickels, I. Marusic, M.S. Chong, Spatial resolution issues in hot-wire anemometry. J. Fluid Mech. 635, 103–136 (2009). doi:10.1017/S0022112009007721

    Article  MATH  Google Scholar 

  10. N.L. Jones, J.K. Thompson, K.R. Arrigo, S.T. Monismith, Hydrodynamic control of phytoplankton loss to the benthos in an estuarine environment. Limnol. Oceanogr. 54(3), 952–969 (2009)

    Article  Google Scholar 

  11. K.C. Kim, R.J. Adrian, Very large-scale motion in the outer layer. Phys. Fluids 11, 417–422 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Marusic, R. Mathis, N. Hutchins, Predictive model for wall-bounded turbulent flow. Science 329(5988), 193–196 (2010). doi:10.1126/science.1188765

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Marusic, J.P. Monty, M. Hultmark, A.J. Smits, On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3 (2013)

    Article  MathSciNet  Google Scholar 

  14. R. Mathis, N. Hutchins, I. Marusic, Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337 (2009). doi:10.1017/S0022112009006946

    Article  MATH  Google Scholar 

  15. R. Mathis, N. Hutchins, I. Marusic, A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537–566 (2011). doi:10.1017/jfm.2011.216

    Article  MATH  Google Scholar 

  16. R. Mathis, I. Marusic, O. Cabrit, N.L. Jones, G.N. Ivey, Modeling bed shear-stress fluctuations in a shallow tidal channel. J. Geophys. Res. Oceans 119 (2014).doi:10.1002/2013JC009718

    Google Scholar 

  17. R. Mathis, I. Marusic, S.I. Chernyshenko, N. Hutchins, Estimating wall-shear-stress fluctuations given an outer region input. J. Fluid Mech. 715, 163–180 (2013). doi:10.1017/jfm.2012.508

    Article  MathSciNet  MATH  Google Scholar 

  18. P.A. Monkewitz, K.A. Chauhan, H.M. Nagib, Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. Phys. Fluids 19, 115101 (2007). doi:10.1063/1.2780196

    Article  Google Scholar 

  19. R. Örlü, P. Schlatter, On the fluctuating wall-shear stress in zero-pressure-gradient turbulent boundary layers. Phys. Fluids 23(1–4), 021704 (2011)

    Article  Google Scholar 

  20. P. Rowiński, J. Aberle, A. Mazurczyk, Shear velocity estimation in hydraulic research. Acta Geophys. Pol. 53(4), 567–583 (2005)

    Google Scholar 

  21. H. Schlichting, K. Gersten, Boundary Layer Theory, eighth revised and enlarged edition edn. (Springer, 2000)

    Google Scholar 

Download references

Acknowledgments

The Australian Research Council and the University of Melbourne McKenzie Fellowship program are gratefully acknowledged for their support. The field work was supported by the CALFED Bay Delta Authority Restoration Program (ERP02P22) and The Foundation for Young Australians Centenary Scholarship Award. Thanks to F. Parchaso and B. Richards from the U.S. Geological Survey for assistance with the field experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Mathis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mathis, R., Marusic, I., Cabrit, O., Jones, N.L., Ivey, G.N. (2016). Reconstruction of Wall Shear-Stress Fluctuations in a Shallow Tidal River. In: Stanislas, M., Jimenez, J., Marusic, I. (eds) Progress in Wall Turbulence 2. ERCOFTAC Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-20388-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20388-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20387-4

  • Online ISBN: 978-3-319-20388-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics