Skip to main content

Plant Genetic Resources for Food and Agriculture

  • Chapter
  • First Online:
Plant Breeding in the Omics Era
  • 1231 Accesses

Abstract

Plant domestication and crop evolution are the basis of agriculture. Their understanding, facilitated by research with deoxyribonucleic acid (DNA) markers, provides further knowledge to use the available genetic endowments held at genebanks in plant breeding. Collecting plant genetic resources, characterizing, evaluating and documenting them, plus their further propagation for ex situ conservation and distribution are among the most important activities of genebanks. Appropriate sampling of genebank accessions helps the management and utilization of a germplasm collection. Germplasm enhancement (or pre-breeding) assists to identify a useful trait, “capture” its genetic diversity, and to put them into a “usable” form.

If an allele is consistently rare, how likely is to be useful?

Robert W. Allard , Univ. of California, Davis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu Alrob I, Christiansen JL, Madsen S, Sevilla R, Ortiz R (2004) Assessing variation in Peruvian highland maize: tassel, kernel and ear descriptors. Plant Genet Resour Newsltr 137:34–41

    Google Scholar 

  • Azhaguvel P, Komatsuda T (2007) Phylogenetic analysis based on nucleotide sequence of a marker linked to the brittle rachis locus indicates a diphyletic origin of barley. Ann Bot 100:1009–1015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094

    Article  PubMed Central  PubMed  Google Scholar 

  • Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet J, Koenig G, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275

    Article  PubMed  Google Scholar 

  • Barboni D, Harrison SP, Bartlein PJ, Jalut G, New M, Prentice IC, Sanchez-Goñi M-F, Spessa A, Davis B, Stevenson AC (2004) Relationships between plant traits and climate in the Mediterranean region: a pollen data analysis. J Veg Sci 15:635–646

    Article  Google Scholar 

  • Bari A, Street K, Mackay M, Endresen DJF, De Pauw E, Amri A (2012) Focused identification of germplasm strategy (FIGS) detects wheat stem rust resistance linked to environmental variables. Genet Resour Crop Evol 59:1465–1481

    Article  Google Scholar 

  • Basigalup DH, Barners DK, Stucker RE (1995) Development of a core collection for perennial Medicago plant introductions. Crop Sci 35:1163–1168

    Article  Google Scholar 

  • Bhattacharjee R, Khairwal I, Bramel P, Reddy K (2007) Establishment of a pearl millet [Pennisetum glaucum (L.) R. Br.] core collection based on geographical distribution and quantitative traits. Euphytica 155:35–45

    Article  Google Scholar 

  • Bhullar NK, Zhang Z, Wicker T, Keller B (2009) Wheat gene bank accessions as a source of new alleles of the powdery mildew resistance gene Pm3: a large scale allele mining project. BMC Plant Biol 10:88. doi:10.1186/1471-2229-10-8

    Article  Google Scholar 

  • Bisht IS, Mahajan RK, Loknathan TR, Agrawal RC (1998a) Diversity in Indian sesame collection and stratification of germplasm accessions in different diversity groups. Genet Resour Crop Evol 45:325–345

    Article  Google Scholar 

  • Bisht IS, Mahajan RK, Patel DP (1998b) The use of characterization data to establish the Indian mungbean core collection and assessment of genetic diversity. Genet Res Crop Evol 45:127–133

    Article  Google Scholar 

  • Bonman JM, Bockelman HE, Jin Y, Hijmans RJ, Gironella A (2007) Geographic distribution of stem rust resistance in wheat landraces. Crop Sci 47:1955–1963

    Article  Google Scholar 

  • Boukema IW, van Hintum ThJL, Astley D (1997) The creation and composition of the Brassica oleracea core collection. Plant Genet Res Newsltr 111:29–32

    Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818824

    Article  Google Scholar 

  • Brown AHD, Grace JP, Speer SS (1987) Designation of a “core” collection of perennial Glycine. Soybean Genet Newsltr 14:59–70

    Google Scholar 

  • Charmet G, Balfourier F (1995) The use of geostatistics for sampling a core collection of perennial ryegrass populations. Genet Res Crop Evol 42:303–309

    Article  Google Scholar 

  • Chavarriaga-Aguirre P, Maya MM, Tohme J, Duque MC, Carlos I, Bonierbale MW, Kresovich S, Kochert G (1999) Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. Mol Breed 5:263–273

    Article  CAS  Google Scholar 

  • Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bred wheat germplasm during the 20th century. Mol Breed 9:1–11

    Article  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by ecotilling. Plant J 37:778–786

    Article  CAS  PubMed  Google Scholar 

  • Coyne CJ, Brown A, Timmerman-Vaughan GM, Mcphee KE, Grusak MA (2005) Refined USDA-ARS pea core collection based on 26 quantitative traits. Pisum Genet 37:3–6

    Google Scholar 

  • Davenport G, Ellis N, Ambrose M, Dicks J (2004) Using bioinformatics to analyze germplasm collections. Euphytica 137:39–54

    Article  CAS  Google Scholar 

  • Diwan N, McIntosh MS, Bauchan GR (1995) Methods of developing a core collection of annual Medicago species. Theor Appl Genet 90:755–761

    Article  CAS  PubMed  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Doust A (2007) Architectural evolution and its implications for domestication in grasses. Ann Bot 100:941–950

    Article  PubMed Central  PubMed  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity: a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  CAS  PubMed  Google Scholar 

  • Dulloo ME, Thormann I, Fiorino E, De Felice S, Rao VR, Snook L (2013) Trends in research using plant genetic resources from germplasm collections: from 1996 to 2006. Crop Sci 53:1–11

    Article  Google Scholar 

  • Dwivedi SL, Upadhyaya HD, Stalker HS, Blair MW, Bertioli DJ, Nielen S, Ortiz R (2008) Enhancing crop gene pools with beneficial traits using crop wild relatives. Plant Breed Rev 28:179–230

    Google Scholar 

  • El-Bouhssini M, Street K, Joubi A, Ibrahim Z, Rihawi F (2009) Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genet Resour Crop Evol 56:1065–1069

    Article  Google Scholar 

  • El-Bouhssini M, Street K, Amri A, Mackay M, Ogbonnaya FC, Omran A, Abdalla O, Baum M, Dabbous A, Rihawi F (2010) Sources of resistance in bread wheat to Russian wheat aphid (Diuraphis noxia) in Syria identified using the focused identification of germplasm strategy (FIGS). Plant Breed 130:96–97

    Article  Google Scholar 

  • Endresen DTF (2010) Predictive association between trait data and ecogeographic data for Nordic barley landraces. Crop Sci 50:2418–2430

    Article  Google Scholar 

  • Endresen DTF, Street K, Mackay M, Bari A, De Pauw E (2011) Predictive association between biotic stress traits and ecogeographic data for wheat and barley landraces. Crop Sci 51:2036–2055

    Article  Google Scholar 

  • Erskine W, Muehlbauer FJ (1991) Allozyme and morphological variability, outcrossing rate and core collection formation in lentil germplasm. Theor Appl Genet 83:119–125

    Article  CAS  PubMed  Google Scholar 

  • Flanders KL, Hawkes JG, Radcliffe EB, Lauer FL (1992) Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and eco-geographical associations. Euphytica 61:83–111

    Article  CAS  Google Scholar 

  • Flanders KL, Radcliffe EB, Hawkes JG (1997) Geographic distribution of insect resistance in potatoes. Euphytica 93:201–221

    Article  Google Scholar 

  • Franco J, Crossa J, Taba S, Shands H (2005) A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci 45:1035–1044

    Article  Google Scholar 

  • Franco J, Crossa J, Warburton M, Taba S (2007) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci 47:854–864

    Google Scholar 

  • Fu Y-B (2006) Impact of plant breeding on genetic diversity of agricultural crops: searching for molecular evidence. Plant Genet Resour 4:71–78

    Article  CAS  Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the old world. Ann Bot 100:903–924

    Article  PubMed Central  PubMed  Google Scholar 

  • Gepts P (2006) Plant genetic resources conservation and utilization: the accomplishments and future of a societal insurance policy. Crop Sci 46:2278–2292

    Article  Google Scholar 

  • Grenier C, Hamon P, Bramel-Cox PJ (2001) Core collection of sorghum. Crop Sci 39(234–240):241–246

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Huamán Z, Aguilar C, Ortiz R (1999) Selecting a Peruvian sweetpotato core collection on the basis of morphological, eco-geographical, and disease and pest reaction data. Theor Appl Genet 98:840–844

    Article  Google Scholar 

  • Huamán Z, Ortiz R, Zhang D, Rodríguez F (2000) Isozyme analysis of entire and core collections of Solanum tuberosum subsp. andigena potato cultivars. Crop Sci 40:273–276

    Article  Google Scholar 

  • Isemura T, Kaga A, Konishi S, Ando T, Tomooka N, Han OK, Vaughan DA (2007) Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Ann Bot 100:1053–1071

    Article  PubMed Central  PubMed  Google Scholar 

  • Jansen J, van Hintum ThJL (2007) Genetic distance sampling: a nocel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce. Theor Appl Genet 114:421–428

    Article  CAS  PubMed  Google Scholar 

  • Jarvis DI, Brown AHD, Cuong PH, Collado-Panduro L, Latournerie-Moreno L, Gyawali S, Tanto T, Sawadogo M, Mar I, Sadiki M, Hue NT-N, Arias-Reyes L, Balma D, Bajracharya J, Castillo F, Rijal D, Belqadi L, Rana R, Saidi S, Ouedraogo J, Zangre R, Rhrib K, Chavez JL, Schoen D, Sthapit B, De Santis P, Fadda C, Hodgkin T (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci U S A 105:5326–5331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jarvis D, Hodgkin T, Sthapit BR, Fadda C, Lopez-Noriega I (2011) An heuristic framework for identifying multiple ways of supporting the conservation and use of traditional crop varieties within the agricultural production system. Crit Rev Plant Sci 30:125–176

    Article  Google Scholar 

  • Labate JA (2000) Software for population genetic analyses of molecular marker data. Crop Sci 40:1521–1528

    Article  Google Scholar 

  • Liu B, Fujita T, Yan Z-H, Sakamoto S, Xu D, Abe J (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100:1027–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahalakshmi V, van Hintum ThJL, Ortiz R (2003) Enhancing germplasm utilization to meet specific user needs through interactive core selections. Plant Genet Resour Newsltr 136:14–22

    Google Scholar 

  • Mahalakshmi V, Ng N, Lawson M, Ortiz R (2007a) Cowpea [Vigna unguiculata (L.) Walp.] core collection defined by geographical and agro-botanical descriptors. Plant Genet Resour Charact Util 5:113–119

    Article  Google Scholar 

  • Mahalakshmi V, Ng Q, Obidiegwu J, Ogunsola D, Lawson M, Ortiz R (2007b) Development of a West African yam Dioscorea spp. core collection. Genet Resour Crop Evol 54:1817–1825

    Article  Google Scholar 

  • Misra BK, Sharma RK, Nagarajan S (2004) Plant breeding: a component of public health strategy. Curr Sci 86:1210–1215

    Google Scholar 

  • Morris CE, Sands DC (2006) The breeder’s dilemma—yield or nutrition? Nat Biotech 24:1078–1080

    CAS  Google Scholar 

  • Ortiz R (1995) Plot techniques for assessment of bunch weight in banana trials under two systems of crop management. Agron J 87:63–69

    Article  Google Scholar 

  • Ortiz R (2002) Germplasm enhancement to sustain genetic gains in crop improvement. In: Engels JMM, Ramanatha Rao V, Brown AHD, Jackson M (eds) Managing plant genetic diversity. International Plant Genetic Resources Institute, Rome (CAB International, Wallingford, United Kingdom), pp 275–290

    Google Scholar 

  • Ortiz R, Sevilla R (1995) Quantitative descriptors for classification and characterization of highland Peruvian maize. Plant Genet Resour Newsltr 110:49–52

    Google Scholar 

  • Ortiz R, Ruiz-Tapia EN, Mujica-Sanchez A (1998) Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor Appl Genet 96:475–483

    Article  CAS  PubMed  Google Scholar 

  • Ortiz R, Sevilla R, Crossa J (2008a) Minimum resources for phenotyping morphological traits of maize (Zea mays L.) genetic resources. Plant Genet Resour Charact Util 6:195–200

    Article  Google Scholar 

  • Ortiz R, Crossa J, Franco J, Sevilla R, Burgueño J (2008b) Classification of Peruvian highland maize races with plant traits. Genet Resour Crop Evol 55:151–162

    Article  Google Scholar 

  • Ortiz R, Sevilla R, Alvarado G, Crossa J (2008c) Numerical classification of related Peruvian highland maize races using internal ear traits. Genet Resour Crop Evol 55:1055–1064

    Article  Google Scholar 

  • Ortiz R, Delgado de la Flor F, Alvarado G, Crossa J (2010) Classifying vegetable genetic resources—a case study with Capsicum. Scientia Hortic 126:186–191

    Article  Google Scholar 

  • Papa R, Bellucci E, Rossi, Leonardi S, Rau D, Gepts P, Nanni L, Attene G (2007) Tagging the signatures of domestication in common bean (Phaseolus vulgaris) by means of pooled DNA samples. Ann Bot 100:1039–1051

    Google Scholar 

  • Pardey PG, Koo B, Wright BD, Van Dusen ME, Skovmand B, Taba S (2001) Costing the conservation of genetic resources: CIMMYT’s ex situ maize and wheat collection. Crop Sci 41:1286–1299

    Article  Google Scholar 

  • Paterson AH (2002) What has QTL mapping taught us about plant domestication? New Phytol 154:591–608

    Article  CAS  Google Scholar 

  • Paterson AH, Lin Y-R, Li Z, Schertz KF, Doebley JF, Pinson SRM et al (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1171

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Chapman AB (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 101:9903–9908

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peeters JP, Wilkes HG, Galwey NW (1990) The use of ecogeographical data in the exploitation of variation from gene banks. Theor Appl Genet 80:110112

    Article  CAS  PubMed  Google Scholar 

  • Pickersgill B (2007) Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann Bot 100:925–940

    Article  PubMed Central  PubMed  Google Scholar 

  • Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100:999–1008

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramírez-Villegas J, Khoury C, Jarvis A, Debouck DG, Guarino L (2010) A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans. PLoS ONE 5(10):e13497. doi:10.1371/journal.pone.0013497

    Article  PubMed Central  PubMed  Google Scholar 

  • Rauf S, Texeira da Silva JA, Khan AA, Navid A (2010) Consequences of plant breeding on genetic diversity. Int J Plant Breed 4:1–21

    Article  Google Scholar 

  • Reddy LJ, Upadhyaya HD, Gowda CLL, Singh S (2005) Development of a core collection in pigeonpea (Cajanus cajan (L) Millsp.). Genet Res Crop Evol 52:1049–1056

    Article  Google Scholar 

  • Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:429–441

    CAS  PubMed  Google Scholar 

  • Simmonds NW (1993) Introgression and incorporation: strategies for the use of crop genetic resources. Biological Rev 68:539–562

    Google Scholar 

  • Sölkner J, Grausgruber H, Okeyo AM, Ruckenbauer P, Wurzinger M (2008) Breeding objectives and the relative importance of traits in plant and animal breeding: a comparative review. Euphytica 161:273–282

    Article  Google Scholar 

  • Spagnoletti Zeuli PL, Qualset CO (1993) Evaluation of five strategies for obtaining a core subset from a large genetic resource collection of durum wheat. Theor Appl Genet 87:295–304

    Article  Google Scholar 

  • Taba S, Diaz J, Franco J, Crossa J (1998) Evaluation of Caribbean maize accessions to develop a core subset. Crop Sci 38:1378–1386

    Article  Google Scholar 

  • Thachuk C, Crossa J, Franco J, Dreisigacker S, Warburton M, Davenport GF (2009) Core hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinform 10:243. doi:10.1186/1471-2105-10-243

    Article  Google Scholar 

  • Thies JA, Fery RL (2002) Evaluation of a core of the U.S. Capsicum germplasm collection for reaction to the northen root-knot nematode. HortScience 37:805–810

    Google Scholar 

  • Tohme J, Jones P, Beebe S, Iwanaga M (1995) The combined use of agroecological and characterization data to establish CIAT Phaseolus vulgaris core collection. In: Hodgkin T, Brown AHD, van Hintum ThJL, Morales EAV (eds) Core collections of plant genetic resources. Wiley, Chischester, pp 95–107

    Google Scholar 

  • Ulukan H (2011) The use of plant genetic resources and biodiversity in classical plant breeding. Acta Agric Scand Sect B Soil Plant Sci 61:97–104

    Google Scholar 

  • Upadhyaya HD, Ortiz R (2001) A minicore subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298

    Article  Google Scholar 

  • Upadhyaya HD, Bramel PJ, Singh S (2001) Development of a chickpea core subset using geographic distribution and quantitative traits. Crop Sci 41:206–210

    Article  Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel P, Singh S (2003) Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Res Crop Evol 50:139–148

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Gowda CLL, Pundir RPS, Reddy VG, Singh S (2006) Development of core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits. Genet Resour Crop Evol 53:679–685

    Article  Google Scholar 

  • Upadhyaya HD, Pundir RPS, Gowda CLL, Gopal Reddy V, Singh S (2009) Establishing a core collection of foxtail millet to enhance the utilization of germplasm of an underutilized crop. Plant Genet Resour Charact Util 7:177–184

    Article  Google Scholar 

  • van Hintum ThJL, Haalman D (1994) Pedigree analysis for composing a core collection of modern cultivars, with examples from barley (Hordeum vulgare s. lat.). Theor Appl Genet 88:70–74

    Article  PubMed  Google Scholar 

  • van Treuren R, Engels JMM, Hoekstra R, van Hintum ThJL (2009) Optimization of the composition of crop collections for ex situ conservation. Plant Genet Resour Charact Util 7:185–193

    Article  Google Scholar 

  • Van Tassel DL, DeHaan LR, Cox TS (2010) Missing domesticated plant forms: can artificial selection fill the gap?. Evol Appl 3:434–452

    Article  PubMed Central  PubMed  Google Scholar 

  • van de Wouw M, van Hintum Th, Kik C, van Treuren R, Visser B (2009) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour Charact Util 6:1–15

    Google Scholar 

  • van de Wouw M, Kik C, van Hintum Th, van Treuren R, Visser B (2010) Genetic diversity trends in twentieth century crop cultivars: a meta-analysis. Theor Appl Genet 120:1241–1252

    Article  PubMed Central  PubMed  Google Scholar 

  • Vaughan DA, Balázs E, Heslop-Harrison JS (2007) From crop domestication to super-domestication. Ann Bot 100:893–901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vincent H, Wiersema J, Kell S, Fielder H, Dobbie S, Castañeda-Álvarez NP, Guarino L, Eastwood R, León B, Maxted N (2012) A prioritized crop wild relative inventory to help underpin global food security. Biol Conserv 167:265–275

    Article  Google Scholar 

  • Wang J-C, Hu J, Huang X-X, Xu S-C (2008) Assessment of different genetic distances in constructing cotton core subset by genotypic values. J Zhejiang Univ Sci B 9:356–362

    Article  PubMed Central  PubMed  Google Scholar 

  • Westengen OT, Jeppson S, Guarino L (2013) Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status. PLoS ONE 8(5):e64146. doi:10.1371/journal.pone.0064146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiurong Z, Yingzhong Z, Yong C, XIangyun F, Qinyuan G, Mingde Z, Hodgkin T (2000) Establishment of sesame germplasm core collection in China. Genet Resour Crop Evol 47:273–279

    Article  Google Scholar 

  • Xu H, Mei Y, Hu J, Zhu J, Gong P (2006) Sampling a core collection of island cotton (Gossypium barbadense L.) based on the genotypic values of fiber traits. Genet Resour Crop Evol 53:515–521

    Article  Google Scholar 

  • Yamasaki M, Wright SI, McMullen MD (2007) Genomic screening for artificial selection during domestication and improvement in maize. Ann Bot 100:967–973

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan W-G, Rutger JN, Bryant RJ, Bockelman HE, Fjellstrom RG, Chen M-H, Tai TH, McClung AM (2007) Development and evaluation of a core subset of the USDA rice germplasm collection. Crop Sci 47:869–876

    Article  Google Scholar 

  • Zohary D, Spiegel-Roy P (1975) Beginnings of fruit growing in the old world. Science 187:319–327

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodomiro Ortiz Ríos .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortiz Ríos, R. (2015). Plant Genetic Resources for Food and Agriculture. In: Plant Breeding in the Omics Era. Springer, Cham. https://doi.org/10.1007/978-3-319-20532-8_2

Download citation

Publish with us

Policies and ethics