Skip to main content

Abstract

Integrated sensor interfaces require energy-efficient high-resolution data converters. In many applications, the best choice is to use incremental analog-to-digital converters (IADCs) incorporating variants of extended counting. In this chapter, we discuss the design of a micropower IADC. By using a feed-forward architecture, the IADC accumulates the residue voltage, so various hybrid variants of extended counting can be implemented. Several such schemes are reviewed and discussed, as well as the trade-off between higher order modulators, higher oversampling ratio and energy efficiency. A two-step IADC is proposed, which extends the performance of an Nth-order IADC close to that of a (2N − 1)th-order IADC. A design example uses the circuitry of a second-order IADC to achieve a performance nearly equal to that of a third-order IADC. The implemented IADC achieves a measured dynamic range of 99.8 dB, and a SNDR of 91 dB for a maximum input 2.2 VPP and a bandwidth of 250 Hz. Fabricated in 65 nm CMOS and operated from a 1.2 V power supply, the IADC’s core area is 0.2 mm2, and it consumes only 10.7 μW. The measured FoMs are 0.76 pJ/conv.step and 173.5 dB, both among the best reported results for IADCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu R, Chae Y, Huijsing JH, Makinwa KAA (2012) A 20-bit ±40mV range read-out IC with 50-nV offset and 0.04% gain error for bridge transducers. IEEE J Solid-State Circuits 47(9):2152–2163

    Article  Google Scholar 

  2. Tan Z, Shalmany SH, Meijer GCM, Pertijs MAP (2012) An energy-efficient 15-bit capacitive-sensor interface based on period modulation. IEEE J Solid-State Circuits 47(7):1703–1711

    Article  Google Scholar 

  3. Tan Z, Deval P, Daamen R, Humbert A, Ponomarev YV, Chae Y, Pertijs MAP (2013) A 1.2-V 8.3-nJ CMOS humidity sensor for RFID applications. IEEE J Solid-State Circuits 48(10):2469–2477

    Article  Google Scholar 

  4. Van Helleputte N et al (2011) A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction and integrated DSP. IEEE J Solid-State Circuits 50(1):230–244

    Article  Google Scholar 

  5. Chen C-H, Crop J, Chae J, Chiang P, Temes GC (2012) A 12-bit 7 μW/channel 1 kHz/channel incremental ADC for biosensor interface circuits. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), pp 2969–2972

    Google Scholar 

  6. Agah A, Vleugels K, Griffin PB, Ronaghi M, Plummer JD, Wooley BA (2010) A high-resolution low-power oversampling ADC with extended-range for bio-sensor arrays. IEEE J Solid-State Circuits 45(6):1099–1110

    Article  Google Scholar 

  7. Kim J-H et al (2012) A 14b extended counting ADC implemented in a 24Mpixel APS-C CMOS image sensor. In: IEEE ISSCC digest of technical papers, pp 390–392

    Google Scholar 

  8. Oike Y, El Gamal A (2013) CMOS image sensor with per-column sigma delta ADC and programmable compressed sensing. IEEE J Solid-State Circuits 48(1):318–328

    Article  Google Scholar 

  9. Markus J, Silva J, Temes GC (2004) Theory and applications of incremental delta sigma converters. IEEE Trans Circuits Syst I 51(4):678–690

    Article  Google Scholar 

  10. Quiquempoix V, Deval P, Barreto A, Bellini G, Markus J, Silva J, Temes GC (2006) A low-power 22-bit incremental ADC. IEEE J Solid-State Circuits 41(7):1562–1571

    Article  MATH  Google Scholar 

  11. Kavusi S, Kakavand H, El Gamal A (2006) On incremental sigma-delta modulation with optimal filtering. IEEE Trans Circuits Syst I 53(5):1004–1015

    Article  MathSciNet  Google Scholar 

  12. Caldwell TC, Johns DA (2010) Incremental data converters at low oversampling ratios. IEEE Trans Circuits Syst I 57(7):1525–1537

    Article  MathSciNet  Google Scholar 

  13. Robert J, Deval P (1988) A second-order high-resolution incremental A/D converter with offset and charge injection compensation. IEEE J Solid-State Circuits 23(3):736–741

    Article  Google Scholar 

  14. Harjani R, Lee TA (1998) FRC: a method for extending the resolution of Nyquist rate converters using oversampling. IEEE Trans Circuits Syst II 45(4):482–494

    Article  Google Scholar 

  15. Maeyer JD, Rombouts P, Weyten L (2004) A double-sampling extended-counting ADC. IEEE J Solid-State Circuits 39(3):411–418

    Article  Google Scholar 

  16. Chen C-H, Zhang Y, He T, Chiang P, Temes GC (2014) A 11 μW 250 Hz BW two-step incremental ADC with 100 dB DR and 91 dB SNDR for integrated sensor interfaces. In: IEEE custom integrated circuits conference (CICC)

    Google Scholar 

  17. Chen C-H, Zhang Y, He T, Chiang P, Temes GC (2015) A micro-power two-step incremental analog-to-digital converter. IEEE J Solid-State Circuits 50(8)

    Google Scholar 

  18. Carbone P, Xu F, Kiaei S, Temes GC (2014) Incremental and extended-range data converters. In: Design, modeling and testing of data converters. Springer, Berlin, pp 143–159

    Google Scholar 

  19. Schreier R, Temes GC (2005) Understanding delta-sigma data converters. IEEE Press/Wiley, Pascataway

    Google Scholar 

  20. Fujimori I et al (2000) A 90-dB SNR 2.5-MHz output-rate ADC using cascaded multibit delta-sigma modulation at 8× oversampling ratio. IEEE J Solid-State Circuits 35(12):1820–1828

    Article  Google Scholar 

  21. Lee CC, Flynn MP (2011) A 14b 23 MS/s 48 mW resetting ΔΣ ADC. IEEE Trans Circuits Syst I 58(6):1167–1177

    Article  MathSciNet  MATH  Google Scholar 

  22. Chae Y, Souri K, Makinwa KA (2013) A 6.3 μW 20 bit incremental zoom-ADC with 6 ppm INL and 1 μV offset. IEEE J Solid-State Circuits 48(12):3019–3027

    Article  MATH  Google Scholar 

  23. Chen C-H, Zhang Y, Jung Y, He T, Ceballos JL, Temes GC (2013) Two-step incremental analogue-to-digital converter. Electron Lett 49(4):250–251

    Article  Google Scholar 

  24. Mulliken G, Adil F, Cauwenberghs G, Genov R (2002) Delta-sigma algorithmic analog-to-digital conversion. In: Proceedings of the IEEE international symposium on circuits and system (ISCAS), pp 687–690

    Google Scholar 

  25. He T, Zhang Y, Meng X, Chen C-H, Temes GC (2015) Micro-power multi-step incremental ADCs for multi-channel sensor interfaces. In: Proceedings of the IEEE international symposium on circuits and systems (ISCAS), 2015, to appear

    Google Scholar 

  26. Chen C, Tan Z, Pertijs MAP (2013) A 1V 14b self-timed zero-crossing-based incremental ∆Σ ADC. In IEEE ISSCC digest of technical papers, pp 274–275

    Google Scholar 

  27. Ha S et al (2013) 85 dB dynamic range 1.2 mW 156 kS/s biopotential recording IC for high-density ECoG flexible active electrode array. In: Proceedings of the European solid-state circuits conference (ESSCIRC)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Hung Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, CH., Zhang, Y., He, T., Temes, G.C. (2016). Micropower Incremental Analog-to-Digital Converters. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-21185-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21185-5_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21184-8

  • Online ISBN: 978-3-319-21185-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics