Skip to main content

5-Aminolevulinic Acid–Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review

  • Chapter
Advances and Technical Standards in Neurosurgery

Abstract

The current first-line treatment of malignant gliomas consists in surgical resection (if possible) as large as possible. The existing tools don’t permit to identify the limits of tumor infiltration, which goes beyond the zone of contrast enhancement on MRI. The fluorescence-guided malignant gliomas surgery was started 15 years ago and had become a standard of care in many countries. The technique is based on fluorescent molecule revelation using the filters, positioned within the surgical microscope. The fluorophore, protoporphyrin IX (PpIX), is converted in tumoral cells from 5-aminolevulinic acid (5-ALA), given orally before surgery. Many studies have shown that the ratio of gross total resections was higher if the fluorescence technique was used. The fluorescence signal intensity is correlated to the cell density and the PpIX concentration. The current method has a very high specificity but still lower sensibility, particularly regarding the zones with poor tumoral infiltration. This book reviews the principles of the technique and the results (extent of resection and survival).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acerbi F, Broggi M, Eoli M, Anghileri E, Cavallo C, Boffano C, Cordella R, Cuppini L, Pollo B, Schiariti M, Visintini S, Orsi C, La Corte E, Broggi G, Ferroli P (2014) Is fluorescein-guided technique able to help in resection of high-grade gliomas? Neurosurg Focus 36(2):E5. doi:10.3171/2013.11.FOCUS13487

    Article  PubMed  Google Scholar 

  2. Albert FK, Forsting M, Sartor K, Adams HP, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–61

    Article  CAS  PubMed  Google Scholar 

  3. Aldave G, Tejada S, Pay E, Marigil M, Bejarano B, Idoate MA, Díez-Valle R (2013) Prognostic value of residual fluorescent tissue in glioblastoma patients after gross total resection in 5-aminolevulinic acid-guided surgery. Neurosurgery 72:915–920

    Article  PubMed  Google Scholar 

  4. Arita H, Kinoshita M, Kagawa N, Fujimoto Y, Kishima H, Hashimoto N, Yoshimine T (2012) 11C-methionine uptake and intraoperative 5-aminolevulinic acid-induced fluorescence as separate index markers of cell density in glioma: a stereotactic image-histological analysis. Cancer 118:1619–1627

    Article  CAS  PubMed  Google Scholar 

  5. Babu R, Adamson C (2012) Fluorescence-guided malignant glioma resections. Curr Drug Discov Technol 9:1–12

    Article  Google Scholar 

  6. Blake E, Curnow A (2010) The hydroxypyridinone iron chelator CP94 can enhance PpIX-induced PDT of cultured human glioma cells. Photochem Photobiol 86:1154–1160

    Article  CAS  PubMed  Google Scholar 

  7. Blake E, Allen J, Curnow A (2011) In vitro comparison of the effects of the iron-chelating agents, CP94 and Dexrazoxane, on protoporphyrin IX accumulation for photodynamic therapy and/or fluorescence guided resection. Photochem Photobiol 87:1419–1426

    Article  CAS  PubMed  Google Scholar 

  8. Chang SM, Parney IF, McDermott M, Barker FG 2nd, Schmidt MH, Huang W, Laws ER Jr, Lillehei KO, Bernstein M, Brem H, Sloan AE, Berger M, Glioma Outcomes Investigators (2003) Perioperative complications and neurological outcomes of first and second craniotomies among patients enrolled in the glioma outcome project. J Neurosurg 98:1175–1181

    Article  PubMed  Google Scholar 

  9. Colditz MJ, Jeffree RL (2012) Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 1: clinical, radiological and pathological studies. J Clin Neurosci 19:1471–1474

    Article  CAS  PubMed  Google Scholar 

  10. Colditz MJ, Kv L, Jeffree RL (2012) Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2: theoretical, biochemical and practical aspects. J Clin Neurosci 19:1611–1616

    Article  CAS  PubMed  Google Scholar 

  11. Colliaud S, Juzeniene A, Moan J, Lange N (2004) On the selectivity of 5-Aminolevulinic acid-Induced protoporphyrin IX formation. Curr Med Chem Anticancer Agents 4:301–316

    Article  Google Scholar 

  12. Della Puppa A, De Pellegrin S, d’Avella E, Gioffrè G, Rossetto M, Gerardi A, Lombardi G, Manara R, Munari M, Saladini M, Scienza R (2013) 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature. Acta Neurochir 155:965–972

    Article  PubMed  Google Scholar 

  13. Díez Valle R, Tejada Solis S, Idoate Gastearena MA, García de Eulate R, Domínguez Echávarri P, Aristu Mendiroz J (2011) Surgery guided by 5- aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol 102:105–113

    Article  PubMed  CAS  Google Scholar 

  14. Divaris DX, Kennedy JC, Pottier RH (1990) Phototoxic damage to sebaceous glands and hair Follicles of mice after systemic administration of 5-Aminolevulinic acid correlates with localized protoporphyrin IX fluorescence. Am J Pathol 136:891–897

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Ennis SR, Novotny A, Xiang J, Shakui P, Masada T, Stummer W, Smith DE, Keep RF (2003) Transport of 5-aminolevulinic acid between blood and brain. Brain Res 959:226–234

    Article  CAS  PubMed  Google Scholar 

  16. Ertl-Wagner BB, Blume JD, Peck D, Udupa JK, Herman B, Levering A, Schmalfuss IM, Members of the American College of Radiology Imaging Network 6662 Study Group (2009) Reliability of tumor volume estimation from MR images in patients with malignant glioma. Results from the American College of Radiology imaging network (ACRIN) 6662 Trial. Eur Radiol 19:599–609

    Article  PubMed Central  PubMed  Google Scholar 

  17. European Medicines Agency (2007) Gliolan scientific discussion. Available from. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000744/human_med_000807.jsp&murl=menus/medicines/medicines.jsp&mid=WC0b01ac058001d124. 21 July 2011

  18. European Medicines Agency (2011) Gliolan – EPAR summary for the public Available from. http://www.ema.europa.eu/ema/index.jspcurl=pages/medicines/human/medicines/000744/human_med_000807.jsp&murl=menus/medicine/medicines.jsp&jsenabled=true. 29 July 2011

  19. Ewelt C, Floeth FW, Felsberg J, Steiger HJ, Sabel M, Langen KJ, Stoffels G, Stummer W (2011) Finding the anaplastic focus in diffuse gliomas: the value of Gd-DTPA enhanced MRI, FET-PET, and intraoperative, ALA-derived tissue fluorescence. Clin Neurol Neurosurg 113:541–547

    Article  PubMed  Google Scholar 

  20. Eyupoglu IY, Hore N, Savaskan N, Grummich P, Roessler K, Buchfelder M, Ganslandt O (2012) Improving the extent of malignant glioma resection by dual intraoperative visualisation approach. PLoS One 7(9):e44885. doi:10.1371/journal.pone.0044885

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Feigl GC, Ritz R, Moraes M, Klein J, Ramina K, Gharabaghi A, Krischek B, Danz S, Bornemann A, Liebsch M, Tatagiba MS (2010) Resection of malignant brain tumors in eloquent cortical areas: a new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J Neurosurg 113:352–357

    Article  PubMed  Google Scholar 

  22. Floeth FW, Sabel M, Ewelt C, Stummer W, Felsberg J, Reifenberger G, Steiger HJ, Stoffels G, Coenen HH, Langen KJ (2011) Comparison of (18)F-FET PET and 5-ALA fluorescence in cerebral gliomas. Eur J Nucl Med Mol Imaging 238:731–741

    Article  CAS  Google Scholar 

  23. Georgakoudi I, Keng PC, Foster TH (1999) Hypoxia significantly reduces aminolaevulinic acid-induced protoporphyrin IX synthesis in EMT6 cells. Br J Cancer 79:1372–1377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gonda DD, Warnke P, Sanai N, Taich Z, Kasper EM, Chen CC (2013) The value of extended glioblastoma resection: insights from randomized controlled trials. Surg Neurol Int 4:1–10

    Google Scholar 

  25. Grant WE, Hopper C, MacRobert AJ, Speight PM, Bown SG (1993) Photodynamic therapy of oral cancer: photosensitisation with systemic aminolaevulinic acid. Lancet 17:147–148

    Article  Google Scholar 

  26. Haglund MM, Berger MS, Hochman DW (1996) Enhanced optical imaging of human gliomas and tumor margins. Neurosurgery 38:308–317

    Article  CAS  PubMed  Google Scholar 

  27. Haj-Hosseini N, Richter J, Andersson-Engels S, Wårdell K (2010) Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid. Lasers Surg Med 42:9–14

    Article  PubMed  Google Scholar 

  28. Hardesty DA, Sanai N (2012) The value of glioma extent of resection in the modern neurosurgical era. Front Neurol 3:140

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hatiboglu MA, Weinberg JS, Suki D, Rao G, Prabhu SS, Shah K, Jackson E, Sawaya R (2009) Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery 64:1073–1081; discussion 1081

    Article  PubMed  Google Scholar 

  30. Hebeda KM, Wolbers JB, Sterenborg HJCM, Kamorshot W, Van Gemert JJC, Van Alphen HAM (1995) Fluorescence localization in tumour and normal brain after intratumoral injection of hematoporphyrin derivative into brain tumor. J Photochem Photobiol B Biol 27:85–92

    Article  CAS  Google Scholar 

  31. Hefti M, Von Campe G, Moschopulosa M, Siegnerb A, Looserc H, Landolt H (2008) 5-aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institution. Swiss Med Wkly 138:180–185

    CAS  PubMed  Google Scholar 

  32. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 10:997–1003

    Article  Google Scholar 

  33. Idoate MA, Diez Valle R, Echeveste J, Tejada S (2011) Pathological characterization of the glioblastoma border as shown during surgery using 5-aminolevulinic acid induced fluorescence. Neuropathology 31:575–582

    Article  PubMed  Google Scholar 

  34. Jacquesson T, Ducray F, Maucourt-Bouch D, Armoiry X, Tisserand GL, Mbaye M, Pelissou-Guyotat I, Guyotat J (2013) Exérèse neurochirurgicale optimale des gliomes de haut grade guidée par fluorescence: mise au point à partir d’une série rétrospectivede 22 patients. Neurochirurgie 59:9–16

    Article  CAS  PubMed  Google Scholar 

  35. Johansson A, Palte G, Schnell O, Schnell O, Tonn JC, Herms J, Stepp H (2010) 5-Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors. Photochem Photobiol 86:1373–1378

    Article  CAS  PubMed  Google Scholar 

  36. Keles GE, Anderson B, Berger MS (1999) The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 52:371–379

    Article  CAS  PubMed  Google Scholar 

  37. Kelty CJ, Ackroyd R, Brown NJ, Brown SB, Reed MW (2004) Comparison of high- vs low-dose 5-aminolevulinic acid for photodynamic therapy of Barrett’s esophagus. Surg Endosc 18:452–458

    Article  CAS  PubMed  Google Scholar 

  38. Kennedy JC, Pottier RH (1992) Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol B 14:275–292

    Article  CAS  PubMed  Google Scholar 

  39. Kowalczuk A, Macdonald RL, Amidei C, Dohrmann G 3rd, Erickson RK, Hekmatpanah J, Krauss S, Krishnasamy S, Masters G, Mullan SF, Mundt AJ, Sweeney P, Vokes EE, Weir BK, Wollman RL (1997) Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41:1028–1038

    Article  CAS  PubMed  Google Scholar 

  40. Krammer B, Plaetzer K (2008) ALA and its clinical impact, from bench to bedside. Photochem Photobiol Sci 7:283–289

    Article  CAS  PubMed  Google Scholar 

  41. Kriegmair M, Baumgartner R, Lumper W, Waidelich R, Hofstetter A (1996) Early clinical experience with 5-aminolevulinic acid for the photodynamic therapy of superficial bladder cancer. Br J Urol 77:667–671

    Article  CAS  PubMed  Google Scholar 

  42. Kubben PL, ter Meulen KJ, Schijns OE, ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H (2011) Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol 11:1062–1070

    Article  Google Scholar 

  43. Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C (2011) Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-field intraoperative MRI guidance. Neuro Oncol 13:1339–1348

    Article  PubMed Central  PubMed  Google Scholar 

  44. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    Article  CAS  PubMed  Google Scholar 

  45. Lenaburg HJ, Inkabi KE, Vitaz TW (2009) The use of intraoperative MRI for the treatment of glioblastoma multiforme. Technol Cancer Res Treat 8:159–162

    Article  PubMed  Google Scholar 

  46. Leunig A, Rick K, Stepp H, Gutmann R, Alwin G, Baumgartner R, Feyh J (1996) Fluorescence imaging and spectroscopy of 5-aminolevulinic acid induced protoporphyrin IX for the detection of neoplastic lesions in the oral cavity. Am J Surg 172:674–675

    Article  CAS  PubMed  Google Scholar 

  47. Li Y, Rey-Dios R, Roberts DW, Valdés PA, Cohen-Gadol AA (2014) Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies. World Neurosurg 82:175–185. pii: S1878-8750(13)00760-2. doi:10.1016/j.wneu.2013.06.014

    Google Scholar 

  48. Linuma S, Farshi SS, Ortel B, Hasan T (1994) A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin. Br J Cancer 70:21–28

    Article  Google Scholar 

  49. Malik Z, Lugacy H (1987) Destruction of erytholeukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer 56:589–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Mc Gillion FB, Thompson GG, Goldberg A (1975) Tissue uptake of d-aminolaevulinic acid. Biochem Pharmacol 24:299–301

    Article  CAS  Google Scholar 

  51. McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, Weingart JD, Brem H, Quiñones-Hinojosa AR (2009) Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg 110:156–162

    Article  PubMed  Google Scholar 

  52. Mirimanoff RO, Gorlia T, Mason W, Van den Bent MJ, Kortmann RD, Fisher B, Reni M, Brandes AA, Curschmann J, Villa S, Cairncross G, Allgeier A, Lacombe D, Stupp R (2006) Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of EORTC26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 24:2563–2569

    Article  CAS  PubMed  Google Scholar 

  53. Montcel B, Mahieu-Williame L, Armoiry X, Meyronet D, Guyotat J (2013) Two-peaked 5- ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas. Biomed Opt Express 4:548–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Moore GE, Peyton WT, Hunter SW, French L (1948) The clinical use of sodium fluorescein and radioactive diiodofluorescein in the localization of tumors of the central nervous system. Minn Med 31:1073–1076

    CAS  PubMed  Google Scholar 

  55. Munakata H, Sun JY, Yoshida K, Nakatani T, Honda E, Hayakawa S, Furuyama K, Hayashi N (2004) Role of the heme regulatory motif in the heme-mediated inhibition of mitochondrial import of 5-aminolevulinate synthase. J Biochem 136:233–238

    Article  CAS  PubMed  Google Scholar 

  56. Murray KJ (1982) Improved surgical resection of human brain tumors: part 1 –a preliminary study. Surg Neurol 17:316–319

    Article  CAS  PubMed  Google Scholar 

  57. Nitta RT, Li G (2013) The invasive nature of glioblastoma. World Neurosurg 80:279–280

    Article  PubMed  Google Scholar 

  58. Novotny A, Stummer W (2003) 5-aminolevulinic acid and the blood – brain barrier- a review. Med Laser Appl 18:36–40

    Article  Google Scholar 

  59. Ocheltree SM, Shen H, Hu Y, Xiang J, Keep RF, Smith DE (2004) Role of PEPT2 in the choroid plexus uptake of glycylsarcosine and 5-aminolevulinic acid: studies in wild-type and null mice. Pharm Res 21:1680–1685

    Article  CAS  PubMed  Google Scholar 

  60. Olson JJ, Ryken T (2008) Guidelines for the treatment of newly diagnosed glioblastoma: introduction. J Neurooncol 89:255–258

    Article  PubMed  Google Scholar 

  61. Okuda T, Yoshioka H, Kato A (2012) Fluorescence-guided surgery for glioblastoma multiforme using high-dose fluorescein sodium with excitation and barrier filters. J Clin Neurosci 19:1719–1722

    Article  PubMed  Google Scholar 

  62. Orringer D, Lau D, Khatri S, Zamora-Berridi G, Zhang K, Wu C, Chaudhary N, Sagher O (2012) Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg 117:851–859

    Article  PubMed  Google Scholar 

  63. Panciani PP, Fontanella M, Schatlo B, Garbossa D, Agnoletti A, Ducati A, Lanotte M (2012) Fluorescence and image guided resection in high grade glioma. Clin Neurol Neurosurg 114:37–41

    Article  PubMed  Google Scholar 

  64. Pastor J, Vega-Zelaya L, Pulido P, Garnés-Camarena O, Abreu A, Sola RG (2013) Role of intraoperative neurophysiological monitoring during fluorescence-guided resection surgery. Acta Neurochir (Wien) 155:2201–2213

    Article  Google Scholar 

  65. Pichlmeier U, Bink A, Schackert G, Stummer W (2008) Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol 10:1025–1034

    Article  PubMed Central  PubMed  Google Scholar 

  66. Pirotte BJ, Levivier M, Goldman S, Massager N, Wikler D, Dewitte O, Bruneau M, Rorive S, David P, Brotchi J (2009) Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 64:471–481 [discussion 81]

    Article  PubMed  Google Scholar 

  67. Pogue BW, Gibbs-Strauss S, Valdés PA, Samkoe K, Roberts DW, Paulsen KD (2010) Review of neurosurgical fluorescence imaging methodologies. IEEE J Sel Top Quantum Electron 16:493–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Regula J, MacRobert AJ, Gorchein A, Buonaccorsi GA, Thorpe SM, Spencer GM, Hatfield AR, Bown SG (1995) Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX–a pilot study. Gut 36:67–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Rimington C (1966) Porphyrin and haem biosynthesis and its control. Acta Med Scand 445:11–24

    CAS  Google Scholar 

  70. Ritz R, Daniels R, Noell S, Feigl GC, Schmidt V, Bornemann A, Ramina K, Mayer D, Dietz K, Strauss WS, Tatagiba M (2012) Hypericin for visualization of high grade gliomas: first clinical experience. Eur J Surg Oncol 38:352–360

    Article  CAS  PubMed  Google Scholar 

  71. Roberts DW, Valdés PA, Harris BT, Fontaine KM, Hartov A, Fan X, Ji S, Lollis SS, Pogue BW, Leblond F, Tosteson TD, Wilson BC, Paulsen KD (2011) Coregistered fluorescence-enhanced tumor resection of malignant glioma: relationships between δ-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. J Neurosurg 114:595–603

    Article  PubMed Central  PubMed  Google Scholar 

  72. Roberts DW, Valdés PA, Harris BT, Hartov A, Fan X, Ji S, Leblond F, Tosteson TD, Wilson BC, Paulsen KD (2012) Glioblastoma multiforme treatment with clinical trials for surgical resection (aminolevulinic acid). Neurosurg Clin N Am 23:371–377

    Article  PubMed Central  PubMed  Google Scholar 

  73. Roessler K, Becherer A, Donat M, Cejna M, Zachenhofer I (2012) Intraoperative tissue fluorescence using 5-aminolevolinic acid (5-ALA) is more sensitive than contrast MRI or amino acid positron emission tomography ((18)F-FET PET) in glioblastoma surgery. Neurol Res 34:314–317

    CAS  PubMed  Google Scholar 

  74. Ryken TC, Frankel B, Julien T, Olson JJ (2008) Surgical management of newly diagnosed glioblastoma in adults: role of cytoreductive surgery. J Neurooncol 89:271–286

    Article  PubMed  Google Scholar 

  75. Rygh OM, Selbekk T, Torp SH, Lydersen S, Hernes TA, Unsgaard G (2008) Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection. Acta Neurochir (Wien) 150:1033–1041; discussion 1042

    Article  Google Scholar 

  76. Shahar T, Nossek E, Steinberg DM, Rozovski U, Blumenthal DT, Bokstein F, Sitt R, Freedman S, Corn BW, Kanner AA, Ram Z (2012) The impact of enrollment in clinical trials on survival of patients with glioblastoma. J Clin Neurosci 19:1530–1534

    Article  PubMed  Google Scholar 

  77. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–764; discussion 264–265

    Article  PubMed  Google Scholar 

  78. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8

    Article  PubMed  Google Scholar 

  79. Sawaya R, Hammoud M, Schoppa D, Hess KR, Wu SZ, Shi WM, Wildrick DM (1998) Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery 42:1044–1055; discussion 1055–1056. Review

    Article  CAS  PubMed  Google Scholar 

  80. Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V (2011) Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol 12:997–1003

    Article  PubMed  Google Scholar 

  81. Sroka R, Beyer W, Gossner L, Sassy T, Stocker S, Baumgartner R (1996) Pharmacokinetics of 5-aminolevulinic-acid-induced porphyrins in tumour-bearing mice. J Photochem Photobiol B 34:13–19

    Article  CAS  PubMed  Google Scholar 

  82. Stieglitz LH, Fichtner J, Andres R, Schucht P, Krähenbühl AK, Raabe A, Beck J (2013) The silent loss of neuronavigation accuracy: a systematic retrospective analysis of factors influencing the mismatch of frameless stereotactic systems in cranial neurosurgery. Neurosurgery 72:796–807

    Article  PubMed  Google Scholar 

  83. Stockhammer F, Misch M, Horn P, Koch A, Fonyuy N, Plotkin M (2009) Association of F18-fluoro-ethyl-tyrosin uptake and 5-aminolevulinic acid-induced fluorescence in gliomas. Acta Neurochir (Wien) 151:1377–1383

    Article  Google Scholar 

  84. Stummer W, Götz C, Hassan A, Heimann A, Kempski O (1993) Kinetics of Photofrin II in perifocal brain edema. Neurosurgery 33:1075–1081; discussion 1081–1082

    Article  CAS  PubMed  Google Scholar 

  85. Stummer W, Stocker S, Wagner S, Stepp H, Fritsch C, Goetz C, Goetz AE, Kiefmann R, Reulen HJ (1998) Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 42:518–525; discussion 525–5266

    Article  CAS  PubMed  Google Scholar 

  86. Stummer W, Stepp H, Möller G, Ehrhardt A, Leonhard M, Reulen HJ (1998) Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir (Wien) 140:995–1000

    Article  CAS  Google Scholar 

  87. Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, Plesnila N, Wietzorrek J, Reulen HJ (1998) In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol B 45:160–169

    Article  CAS  PubMed  Google Scholar 

  88. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013

    Article  CAS  PubMed  Google Scholar 

  89. Stummer W, Reulen HJ, Novotny A, Stepp H, Tonn JC (2003) Fluorescence-guided resections of malignant gliomas–an overview. Acta Neurochir Suppl 88:9–12

    CAS  PubMed  Google Scholar 

  90. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, ALA-Glioma Study Group (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  PubMed  Google Scholar 

  91. Stummer W, Reulen HJ, Meinel T, Pichlmeier U, Schumacher W, Tonn JC, Rohde V, Oppel F, Turowski B, Woiciechowsky C, Franz K, Pietsch T, ALA-Glioma Study Group (2008) Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery 62:564–576; discussion 564–576

    Article  PubMed  Google Scholar 

  92. Stummer W, Van den Bent MJ, Westphal M (2011) Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion. Acta Neurochir (Wien) 153:1211–1218

    Article  Google Scholar 

  93. Stummer W, Tonn JC, Mehdorn HM, Nestler U, Franz K, Goetz C, Bink A, Pichlmeier U, ALA-Glioma Study Group (2011) Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. J Neurosurg 114:613–623

    Article  PubMed  Google Scholar 

  94. Stummer W, Tonn JC, Goetz C, Ullrich W, Stepp H, Bink A, Pietsch T, Pichlmeier U (2014) 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 74:310–319; discussion 319–320

    Article  PubMed Central  PubMed  Google Scholar 

  95. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  96. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  97. Schucht P, Knittel S, Slotboom J, Seidel K, Murek M, Jilch A, Raabe A, Beck J (2013) 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochir (Wien) 156:305–312; discussion

    Article  Google Scholar 

  98. Schucht P, Beck J, Abu-Isa J, Andereggen L, Murek M, Seidel K, Stieglitz L, Raabe A (2014) Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5-ALA intraoperative fluorescence imaging and brain mapping. Neurosurgery. doi:10.1227/NEU.0b013e31826d1e6b

    Google Scholar 

  99. Takahashi K, Ikeda N, Nonoguchi N, Kajimoto Y, Miyatake S, Hagiya Y, Ogura S, Nakagawa H, Ishikawa T, Kuroiwa T (2011) Enhanced expression of coproporphyrinogen oxidase in malignant brain tumors: CPOX expression and 5-ALA-induced fluorescence. Neuro Oncol 13:1234–1243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Teng L, Nakada M, Zhao SG, Endo Y, Furuyama N, Nambu E, Pyko IV, Hayashi Y, Hamada JI (2011) Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br J Cancer 104:798–807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Terr L, Weiner LP (1983) An autoradiographic study of delta-aminolevulinic acid uptake by mouse brain. Exp Neurol 79:564–568

    Article  CAS  PubMed  Google Scholar 

  102. Tonn JC, Stummer W (2008) Fluorescence-guided resection of malignant gliomas using 5-aminolevulinic acid: practical use, risks, and pitfalls. Clin Neurosurg 55:20–26

    PubMed  Google Scholar 

  103. Tsugu A, Ishizaka H, Mizokami Y, Osada T, Baba T, Yoshiyama M, Nishiyama J, Matsumae M (2011) Impact of the combination of 5-aminolevulinic acid-induced fluorescence with intraoperative magnetic resonance imaging-guided surgery for glioma. World Neurosurg 76:120–127

    Article  PubMed  Google Scholar 

  104. Unsgaard G, Selbekk T, Brostrup Müller T, Ommedal S, Torp SH, Myhr G, Bang J, Nagelhus Hernes TA (2005) Ability of navigated 3D ultrasound to delineate gliomas and metastases–comparison of image interpretations with histopathology. Acta Neurochir (Wien) 147:1259–1269; discussion 1269

    Article  CAS  Google Scholar 

  105. Utsuki S, Oka H, Sato S, Shimizu S, Suzuki S, Tanizaki Y, Kondo K, Miyajima Y, Fujii K (2007) Histological examination of false positive tissue resection using 5-aminolevulinic acid-induced fluorescence guidance. Neurol Med Chir 47:210–214

    Article  Google Scholar 

  106. Valdés PA, Samkoe K, O’Hara JA, Roberts DW, Paulsen KD, Pogue BW (2010) Deferoxamine iron chelation increases delta-aminolevulinic acid induced protoporphyrin IX in xenograft glioma model. Photochem Photobiol 86:471–475

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Valdés PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan X, Tosteson TD, Hartov A, Ji S, Erkmen K, Simmons NE, Paulsen KD, Roberts DW (2011) Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 115:11–17

    Article  PubMed Central  PubMed  Google Scholar 

  108. Valdés PA, Kim A, Brantsch M, Valdés PA, Kim A, Brantsch M, Niu C, Moses ZB, Tosteson TD, Wilson BC, Paulsen KD, Roberts DW, Harris BT (2011) 5-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro Oncol 13:846–856

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Valdés PA, Kim A, Leblond F, Conde OM, Harris BT, Paulsen KD, Wilson BC, Roberts DW (2011) Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery. J Biomed Opt 16:116007–1160014

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Valdés PA, Moses ZB, Kim A, Belden CJ, Wilson BC, Paulsen KD, Roberts DW, Harris BT (2012) Gadolinium- and 5-aminolevulinic acid-induced protoporphyrin IX levels in human gliomas: an ex vivo quantitative study to correlate protoporphyrin IX levels and blood-brain barrier breakdown. J Neuropathol Exp Neurol 71:806–813

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Van den Boogert J, van Hillegersberg R, de Rooij FW, de Bruin RW, Edixhoven-Bosdijk A, Houtsmuller AB, Siersema PD, Wilson JH, Tilanus HW (1998) 5-Aminolaevulinic acid-induced protoporphyrin IX accumulation in tissues: pharmacokinetics after oral or intravenous administration. J Photochem Photobiol B 44:29–38

    Article  PubMed  Google Scholar 

  112. Webber J, Kessel D, Fromm D (1997) Plasma levels of protoporphyrin IX in humans after oral administration of 5-aminolevulinic acid. J Photochem Photobiol B 137:151–153

    Article  Google Scholar 

  113. Webber J, Kessel D, Fromm D (1997) Side effects and photosensitization of human tissues after aminolevulinic acid. J Surg Res 68:31–37

    Article  CAS  PubMed  Google Scholar 

  114. Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP, Schramm J, Westphal M, Schackert G, Simon M, Tonn JC, Heese O, Krex D, Nikkhah G, Pietsch T, Wiestler O, Reifenberger G, von Deimling A, Loeffler M (2009) Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 27:5743–57450

    Article  CAS  PubMed  Google Scholar 

  115. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jääskeläinen J, Ram Z (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 5:79–88

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Widhalm G, Wolfsberger S, Minchev G, Woehrer A, Krssak M, Czech T, Prayer D, Asenbaum S, Hainfellner JA, Knosp E (2010) 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with non significant contrast enhancement. Cancer 116:1545–1552

    Article  CAS  PubMed  Google Scholar 

  117. Widhalm G, Kiesel B, Woehrer A, Traub-Weidinger T, Preusser M, Marosi C, Prayer D, Hainfellner JA, Knosp E, Wolfsberger S (2013) 5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. PLoS One 18:8

    Google Scholar 

  118. Willems PW, Taphoorn MJ, Burger H, Berkelbach van der Sprenkel JW, Tulleken CA (2006) Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg 104:360–368

    Article  PubMed  Google Scholar 

  119. Willems PW, van der Sprenkel JW, Tulleken CA, Viergever MA, Taphoorn MJ (2006) Neuronavigation and surgery of intracerebral tumours. J Neurol 253:1123–1136

    Article  CAS  PubMed  Google Scholar 

  120. Wyld L, Reed MW, Brown NJ (1998) The influence of hypoxia and pH on aminolaevulinic acid-induced photodynamic therapy in bladder cancer cells in vitro. Br J Cancer 77:1621–1622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Wyld L, Tomlinson M, Reed MW, Brown NJ (2002) Aminolaevulinic acid-induced photodynamic therapy: cellular responses to glucose starvation. Br J Cancer 86:1343–1347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Zhao S, Wu J, Wang C, Liu H, Dong X, Shi C, Shi C, Liu Y, Teng L, Han D, Chen X, Yang G, Wang L, Shen C, Li H (2013) Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: a systematic review and meta-analysis of prospective studies. PLoS One 28:8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Guyotat MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Guyotat, J., Pallud, J., Armoiry, X., Pavlov, V., Metellus, P. (2016). 5-Aminolevulinic Acid–Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review. In: Schramm, J. (eds) Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-319-21359-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21359-0_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21358-3

  • Online ISBN: 978-3-319-21359-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics