Skip to main content

A 2k-vertex Kernel for Maximum Internal Spanning Tree

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9214))

Included in the following conference series:

Abstract

We consider the parameterized version of the maximum internal spanning tree problem: given an n-vertex graph and a parameter k, does the graph have a spanning tree with at least k internal vertices? Fomin et al. [J. Comput. System Sci., 79:1–6] crafted a very ingenious reduction rule, and showed that a simple application of this rule is sufficient to yield a 3k-vertex kernel for this problem. Here we propose a novel way to use the same reduction rule, resulting in an improved 2k-vertex kernel. Our algorithm applies first a greedy procedure consisting of a sequence of local exchange operations, which ends with a local-optimal spanning tree, and then uses this special tree to find a reducible structure. As a corollary of our kernel, we obtain a \(4^k \cdot n^{O(1)}\)-time deterministic algorithm, improving all previous algorithms for the problem.

Supported by the National Natural Science Foundation of China under grants 61232001, 61472449, and 61420106009.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binkele-Raible, D., Fernau, H., Gaspers, S., Liedloff, M.: Exact and parameterized algorithms for max internal spanning tree. Algorithmica 65(1), 95–128 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cohen, N., Fomin, F.V., Gutin, G., Kim, E.J., Saurabh, S., Yeo, A.: Algorithm for finding \(k\)-vertex out-trees and its application to \(k\)-internal out-branching problem. Journal of Computer and System Sciences 76(7), 650–662 (2010)

    Article  MathSciNet  Google Scholar 

  3. Daligault, J.: Combinatorial Techniques for Parameterized Algorithms and Kernels, with Applicationsto Multicut. Ph.D. thesis, Université Montpellier II, Montpellier, Hérault, France (2011)

    Google Scholar 

  4. Fomin, F.V., Gaspers, S., Saurabh, S., Thomassé, S.: A linear vertex kernel for maximum internal spanning tree. Journal of Computer and System Sciences 79(1), 1–6 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fomin, F.V., Grandoni, F., Lokshtanov, D., Saurabh, S.: Sharp separation and applications to exact and parameterized algorithms. Algorithmica 63(3), 692–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gutin, G., Razgon, I., Kim, E.J.: Minimum leaf out-branching and related problems. Theoretical Computer Science 410(45), 4571–4579 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hassin, R., Tamir, A.: On the minimum diameter spanning tree problem. Information Processing Letters 53(2), 109–111 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM 42(2), 321–328 (1995). a preliminary version appeared in STOC 1994

    Article  MathSciNet  MATH  Google Scholar 

  9. Knauer, M., Spoerhase, J.: Better approximation algorithms for the maximum internal spanning tree problem. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 459–470. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Könemann, J., Ravi, R.: A matter of degree: Improved approximation algorithms for degree-bounded minimum spanning trees. SIAM Journal on Computing 31(6), 1783–1793 (2002). a preliminary version appeared in STOC 2000

    Article  MathSciNet  MATH  Google Scholar 

  11. Könemann, J., Ravi, R.: Primal-dual meets local search: Approximating MSTs with nonuniform degree bounds. SIAM Journal on Computing 34(3), 763–773 (2005). a preliminary version appeared in STOC 2003

    Article  MathSciNet  MATH  Google Scholar 

  12. Koutis, I., Williams, R.: Limits and applications of group algebras for parameterized problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Li, W., Chen, J., Wang, J.: Deeper local search for better approximation on maximum internal spanning trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 642–653. Springer, Heidelberg (2014)

    Google Scholar 

  14. Lu, H., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. Journal of Algorithms 29(1), 132–141 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nederlof, J.: Fast polynomial-space algorithms using inclusion-exclusion. Algorithmica 65(4), 868–884 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ozeki, K., Yamashita, T.: Spanning trees: A survey. Graphs and Combinatorics 27(1), 1–26 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Prieto, E., Sloper, C.: Either/or: using vertex Cover structure in designing FPT-algorithms — the case of k-internal spanning tree. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Prieto, E., Sloper, C.: Reducing to independent set structure–the case of \(k\)-internal spanning tree. Nordic Journal of Computing 12(3), 308–318 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Salamon, G.: Approximating the maximum internal spanning tree problem. Theoretical Computer Science 410(50), 5273–5284 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Salamon, G.: Degree-Based Spanning Tree Optimization. Ph.D. thesis, Budapest University of Technology and Economics, Budapest, Hungary (2010)

    Google Scholar 

  21. Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Information Processing Letters 105(5), 164–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based approach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Li, W., Wang, J., Chen, J., Cao, Y. (2015). A 2k-vertex Kernel for Maximum Internal Spanning Tree. In: Dehne, F., Sack, JR., Stege, U. (eds) Algorithms and Data Structures. WADS 2015. Lecture Notes in Computer Science(), vol 9214. Springer, Cham. https://doi.org/10.1007/978-3-319-21840-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21840-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21839-7

  • Online ISBN: 978-3-319-21840-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics