Skip to main content

X-Ray Binaries

  • Reference work entry
  • First Online:
Book cover Handbook of Supernovae

Abstract

This chapter discusses the implications of X-ray binaries on our knowledge of Type Ibc and Type II supernovae. X-ray binaries contain accreting neutron stars and stellar-mass black holes which are the end points of massive star evolution. Studying these remnants thus provides clues to understanding the evolutionary processes that lead to their formation. We focus here on the distributions of dynamical masses, space velocities, and chemical anomalies of their companion stars. These three observational features provide unique information on the physics of core collapse and supernovae explosions within interacting binary systems. There is suggestive evidence for a gap between ≈ 2 and 5 M in the observed mass distribution. This might be related to the physics of the supernova explosions although selections effects and possible systematics may be important. The difference between neutron star mass measurements in low-mass X-ray binaries (LMXBs) and pulsar masses in high-mass X-ray binaries (HMXBs) reflects their different accretion histories, with the latter presenting values close to birth masses. On the other hand, black holes in LMXBs appear to be limited to \(\lesssim\) 12 M because of strong mass loss during the wind Wolf-Rayet phase. Detailed studies of a limited sample of black hole X-ray binaries suggest that the more massive black holes have a lower space velocity, which could be explained if they formed through direct collapse. Conversely, the formation of low-mass black holes through a supernova explosion implies that large escape velocities are possible through ensuing natal and/or Blaauw kicks. Finally, chemical abundance studies of the companion stars in seven X-ray binaries indicate they are metal rich (all except GRO J1655-40) and possess large peculiar abundances of α-elements. Comparison with supernova models is, however, not straightforward given current uncertainties in model parameters such as mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alpar MA, Cheng AF, Ruderman MA, Shaham J (1982) A new class of radio pulsars. Nature 300:728–730

    Article  ADS  Google Scholar 

  • Belczynski K, Wiktorowicz G, Fryer CL, Holtz DE, Kalogera V (2012) Missing black holes unveil the supernova explosion mechanism. ApJ 757:91–96

    Article  ADS  Google Scholar 

  • Blaauw A (1961) On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems. Bull Astron Inst Neth 15:265–290

    ADS  Google Scholar 

  • Brown GE, Heger A, Langer N, Lee C-H, Wellstein S, Bethe HA (2001) Formation of high mass X-ray black hole binaries. New Astron 6:457–470

    Article  ADS  Google Scholar 

  • Cantrell AG, Bailyn CD, McClintock JE, Orosz JA (2008) Optical state changes in the X-ray-quiescent black hole A0620-00. ApJL 673:L159–L162

    Article  ADS  Google Scholar 

  • Casares J, González Hernández JI, Israelian G, Rebolo R (2010) On the mass of the neutron star in Cyg X-2. MNRAS 401:2517–2520

    Article  ADS  Google Scholar 

  • Casares J, Negueruela I, Ribó M, Ribas I, Paredes JM, Herrero A, Simón-Díaz S (2014) A Be-type star with a black-hole companion. Nature 505:378–381

    Article  ADS  Google Scholar 

  • Casares J, Jonker PG (2014) Mass Measurements of Stellar and Intermediate-Mass Black Holes. Space Sci Rev 183:223–252

    Article  ADS  Google Scholar 

  • Charles PA, Coe MJ (2006) Optical, ultraviolet and infrared observations of X-ray binaries. In: Lewin W, van der Klis M (eds) Compact stellar X-ray sources. Cambridge astrophysics series, vol 39. Cambridge University Press, Cambridge, pp 215–265

    Chapter  Google Scholar 

  • Chomiuk L, Strader J, Maccarone TJ, Miller-Jones JCA, Heinke C, Noyola E et al (2013) A radio-selected black hole X-ray binary candidate in the milky way globular cluster M62. ApJ 777: 69–77

    Article  ADS  Google Scholar 

  • Clark JS, Goodwin SP, Crowther PA, Kaper L, Fairbairn M, Langer N et al (2002) Physical parameters of the high-mass X-ray binary 4U1700-37. A&A 392:909–920

    Article  ADS  Google Scholar 

  • Collins GW II, Sonneborn GH (1977) Some effects of rotation on the spectra of upper-main-sequence stars. ApJ Suppl 34:41–94

    Article  ADS  Google Scholar 

  • Dehnen W, Binney JJ (1998) Local stellar kinematics from HIPPARCOS data. MNRAS 298: 387–394

    Article  ADS  Google Scholar 

  • Dhawan V, Mirabel IF, Ribó M, Rodrigues I (2007) Kinematics of Black Hole X-Ray Binary GRS 1915+105. ApJ 668:430–434

    Article  ADS  Google Scholar 

  • Farr WM, Sravan N, Cantrell A, Kreidberg L, Bailyn CD, Mandel I, Kalogera V (2011) The mass distribution of stellar-mass black holes. ApJ 741:103–121

    Article  ADS  Google Scholar 

  • Fryer CL, Kalogera V (2001) Theoretical black hole mass distributions. ApJ 554:548–560

    Article  ADS  Google Scholar 

  • Gerke JR, Kochanek CS, Stanek KZ (2015) The search for failed supernovae with the large binocular telescope: first candidates. MNRAS 450:3289–3305

    Article  ADS  Google Scholar 

  • González ME, Stairs IH, Ferdman RD, Freire PCC, Nice DJ, Demorest PB et al (2011) High-precision timing of five millisecond pulsars: space velocities, binary evolution, and equivalence principles. ApJ 743:102–113

    Article  ADS  Google Scholar 

  • González Hernández JI, Rebolo R, Israelian G, Casares J, Maeder A, Meynet G (2004) Chemical abundances in the secondary star in the black Hole binary A0620-00. ApJ 609:988–998

    Article  ADS  Google Scholar 

  • González Hernández JI, Rebolo R, Israelian G, Casares J, Maeda K, Bonifacio P et al (2005) Chemical abundances in the secondary star of the neutron star binary centaurus X-4. ApJ 630:495–505

    Article  ADS  Google Scholar 

  • González Hernández JI, Rebolo R, Israelian G, Harlaftis ET, Filippenko AV, Chornock R (2006) XTE J1118+480: A Metal-rich Black Hole Binary in the Galactic Halo. ApJL 644: L49–L52

    Article  ADS  Google Scholar 

  • González Hernández JI, Rebolo R, Israelian G (2008a) The black hole binary nova Scorpii 1994 (GRO J1655–40): an improved chemical analysis. A&A 478:203–217

    Article  ADS  Google Scholar 

  • González Hernández JI, Rebolo R, Israelian G, Filippenko AV, Chornock R, Tominaga N et al (2008b) Chemical Abundances of the Secondary Star in the Black Hole X-Ray Binary XTE J1118+480. ApJ 679:732–745

    Article  ADS  Google Scholar 

  • González Hernández JI, Casares J, Rebolo R, Israelian G, Filippenko AV, Chornock R (2011) Chemical abundances of the secondary star in the black hole X-ray binary V404 Cygni. ApJ 738:95–107

    Article  ADS  Google Scholar 

  • Gualandris A, Colpi M, Portegies Zwart S, Possenti A (2005) Has the black hole in XTE J1118+480 experienced an asymmetric natal kick? ApJ 618:845–851

    Article  ADS  Google Scholar 

  • Honma M, Nagayama T, Ando K, Bushimata T, Choi YK, Handa T et al (2012) Fundamental Parameters of the Milky Way Galaxy Based on VLBI astrometry. PASJ 64:136

    Article  ADS  Google Scholar 

  • Hynes RI, Steeghs D, Casares J, Charles PA, O’Brien K (2004) The Distance and Interstellar Sight Line to GX 339-4. ApJ 609:317–324

    Article  ADS  Google Scholar 

  • Israelian G, Rebolo R, Basri G, Casares J, Martín EL (1999) Evidence of a supernova origin for the black hole in the system GRO J1655 – 40. Nature 401:142–144

    Article  ADS  Google Scholar 

  • Janka H-T (2013) Natal kicks of stellar mass black holes by asymmetric mass ejection in fallback supernovae. MNRAS 434:1355–1361

    Article  ADS  Google Scholar 

  • Johnson DRH, Soderblom DR (1987) Calculating galactic space velocities and their uncertainties, with an application to the ursa major group. AJ 93:864–867

    Article  ADS  Google Scholar 

  • Jonker PG, Nelemans G (2004) The distances to Galactic low-mass X-ray binaries: consequences for black hole luminosities and kicks. MNRAS 354:355–366

    Article  ADS  Google Scholar 

  • Joss PC, Rappaport SA (1984) Neutron stars in binary systems. Ann Rev Astron Astrophys 22:537–592

    Article  ADS  Google Scholar 

  • Knigge C, Coe MJ, Podsiadlowski P (2011) Two populations of X-ray pulsars produced by two types of supernova. Nature 479:372–375

    Article  ADS  Google Scholar 

  • Kochanek CS (2014) Failed supernovae explain the compact remnant mass function. ApJ 785:28–33

    Article  ADS  Google Scholar 

  • Kreidberg L, Bailyn CD, Farr WM, Kalogera V (2012) Mass measurements of black holes in X-ray transients: is there a mass gap? ApJ 757:36–52

    Article  ADS  Google Scholar 

  • Kurucz R (1993) ATLAS9 stellar atmosphere programs and 2 km/s grid. Kurucz CD-ROM, vol 13. Smithsonian Astrophysical Observatory, Cambridge, p 13

    Google Scholar 

  • Lovegrove E, Woosley SE (2013) Very low energy supernovae from neutrino mass loss. ApJ 769:109–116

    Article  ADS  Google Scholar 

  • Lyne AG, Lorimer DR (1994) High birth velocities of radio pulsars. Nature 369:127–129

    Article  ADS  Google Scholar 

  • Maccarone TJ, Kundu A, Zepf SE, Piro AL, Bildsten L (2005) The discovery of X-ray binaries in the Sculptor dwarf spheroidal galaxy. MNRAS 364:L61–L65

    Article  ADS  Google Scholar 

  • Macdonald TD, Bailyn CD, Buxton M, Cantrell AG, Chatterjee R, Kennedy-Shaffer R et al (2014) The black hole binary V4641 sagitarii: activity in quiescence and improved mass determinations. ApJ 784:2–20

    Article  ADS  Google Scholar 

  • Mason AB, Norton AJ, Clark JS, Negueruela I, Roche P (2011) Preliminary determinations of the masses of the neutron star and mass donor in the high mass X-ray binary system EXO 1722-363. A&A 509:79–82

    Article  Google Scholar 

  • Mason AB, Norton AJ, Clark JS, Negueruela I, Roche P (2011) The masses of the neutron and donor star in the high-mass X-ray binary IGR J18027-2016. A&A 532:124–128

    Article  ADS  Google Scholar 

  • Mason AB, Clark JS, Norton AJ, Crowther PA, Tauris TM, Langer N et al (2012) The evolution and masses of the neutron star and donor star in the high mass X-ray binary OAO 1657-415. MNRAS 422:199–206

    Article  ADS  Google Scholar 

  • Mata Sánchez D, Muñoz-Darias T, Casares J, Steeghs D, Ramos Almeida C, Acosta Pulido JA (2015) Mass constraints to Sco X-1 from Bowen fluorescence and deep near-infrared spectroscopy. MNRAS 449:L1–L5

    Article  ADS  Google Scholar 

  • Miller-Jones JCA, Jonker PG, Nelemans G, Portegies Zwart S, Dhawan V, Brisken W et al (2009) The formation of the black hole in the X-ray binary system V404 Cyg. MNRAS 394: 1440–1448

    Article  ADS  Google Scholar 

  • Miller-Jones JCA, Jonker PG, Dhawan V, Brisken W, Rupen MP, Nelemans G et al (2009) The first accurate parallax distance to a black hole. ApJL 706:L230–L234

    Article  ADS  Google Scholar 

  • Miller-Jones JCA, Jonker PG, Maccarone TJ, Nelemans G, Calvelo DE (2011) A deep radio survey of hard state and quiescent black hole X-ray binaries. ApJL 739:L18–L23

    Article  ADS  Google Scholar 

  • Miller-Jones JCA (2014) Astrometric observations of X-ray binaries using very long baseline interferometry. PASA – Publ Astron Soc Aust 31:16–29

    ADS  Google Scholar 

  • Mirabel IF, Dhawan V, Mignani RP, Rodrigues I, Guglielmetti F (2001) A high-velocity black hole on a Galactic-halo orbit in the solar neighbourhood. Nature 413:139–141

    Article  ADS  Google Scholar 

  • Mirabel IF, Mignani R, Rodrigues I, Combi JA, Rodriguez LF, Guglielmetti F (2002) The runaway black hole GRO J1655-40. A&A 395:595–599

    Article  ADS  Google Scholar 

  • Mirabel IF, Rodrigues I (2003) Formation of a black hole in the dark. Science 300:1119–1121

    Article  ADS  Google Scholar 

  • Muñoz-Darias T, Casares J, Martínez-Pais IG (2005) The “K-Correction” for Irradiated Emission Lines in LMXBs: Evidence for a Massive Neutron Star in X1822-371 (V691 CrA). ApJ 635:502–507

    Article  ADS  Google Scholar 

  • Muñoz-Darias T, Casares J, Martíinez-Pais IG (2008) The mass of the X-ray pulsar in X1822-371. In: 40 years of pulsaRS: millisecond pulsars, magnetars and more. AIP Conference Proceedings 983:542–544

    Google Scholar 

  • Nakamura T, Umeda H, Iwamoto K, Nomoto K, Hashimoto M, Hix WR et al (2001) Explosive Nucleosynthesis in Hypernovae. ApJ 555:880–899

    Article  ADS  Google Scholar 

  • Nelemans G, Tauris TM, van den Heuvel EPJ (1999) Constraints on mass ejection in black hole formation derived from black hole X-ray binaries. A&A 352:L87–L90

    ADS  Google Scholar 

  • O’Connor E, Ott CD (2011) Black Hole Formation in Failing Core-Collapse Supernovae. ApJ 730:70–89

    Article  ADS  Google Scholar 

  • Orosz J, Kuulkers E, van der Klis M, McClintock JE, Garcia MR, Callanan PJ et al (2001) A Black Hole in the Superluminal Source SAX J1819.3-2525 (V4641 Sgr). ApJ 555:489–503

    Article  ADS  Google Scholar 

  • Orosz JA, Steiner JF, McClintock JE, Buxton MM, Bailyn CD, Steeghs D et al (2014) The Mass of the Black Hole in LMC X-3. ApJ 794:154–171

    Article  ADS  Google Scholar 

  • Özel F, Psaltis D, Narayan R, McClintock JE (2010) The Black Hole Mass Distribution in the Galaxy. ApJ 725:1918–1927

    Article  ADS  Google Scholar 

  • Özel F, Psaltis D, Narayan R, Santos Villarreal A (2012) On the Mass Distribution and Birth Masses of Neutron Stars. ApJ 757:55–67

    Article  ADS  Google Scholar 

  • Piro AL (2013) Taking the “Un” out of “Unnovae”. ApJL 768:L14–L18

    Article  ADS  Google Scholar 

  • Quaintrell H, Norton AJ, Ash TDC, Roche P, Willems B, Bedding TR et al (2003) The mass of the neutron star in Vela X-1 and tidally induced non-radial oscillations. A&A 401:313–323

    Article  ADS  Google Scholar 

  • Rawls ML, Orosz JA, McClintock JE, Torres MAP, Bailyn CD, Buxton MM (2011) Refined neutron star mass determinations for six eclipsing X-ray pulsar binaries. ApJ 730:25–35

    Article  ADS  Google Scholar 

  • Reid MJ, McClintock JE, Narayan R, Gou L, Remillard RA, Orosz JA (2011) The Trigonometric Parallax of Cygnus X-1. ApJ 742:83–87

    Article  ADS  Google Scholar 

  • Reid MJ, McClintock JE, Steiner JF, Steeghs D, Remillard RA, Dhawan V et al (2014) A Parallax Distance to the Microquasar GRS 1915+105 and a Revised Estimate of its Black Hole Mass. ApJ 796:2–9

    Article  ADS  Google Scholar 

  • Reig P (2011) Be/X-ray binaries. Astrophys Space Sci 332:1–29

    Article  ADS  Google Scholar 

  • Repetto S, Nelemans G (2015) Constraining the formation of black holes in short-period black hole low-mass X-ray binaries. MNRAS 453:3341–3355

    Article  ADS  Google Scholar 

  • Reynolds AP, Quaintrell H, Still MD, Roche P, Chakrabarty D, Levine SE (1997) A new mass estimate for Hercules X-1. MNRAS 288:43–52

    Article  ADS  Google Scholar 

  • Reynolds TM, Fraser M, Gilmore G (2015) Gone without a bang: an archival HST survey for disappearing massive stars. MNRAS 453:2885–2900

    Article  ADS  Google Scholar 

  • Russell TD, Miller-Jones JCA, Curran PA, Soria R, Altamirano D, Corbel S et al (2015) Radio monitoring of the hard state jets in the 2011 outburst of MAXI J1836-194. MNRAS 450: 1745–1759

    Article  ADS  Google Scholar 

  • Shahbaz T, Watson CA, Dhillon VS (2014) The spotty donor star in the X-ray transient Cen X-4. MNRAS 440:504–513

    Article  ADS  Google Scholar 

  • Shajn G, Struve O (1929) On the rotation of the stars. MNRAS 89:222–239

    Article  ADS  Google Scholar 

  • Smartt SJ, Eldridge JJ, Crockett RM, Maund JR (2009) The death of massive stars - I. Observational constraints on the progenitors of Type II-P supernovae. MNRAS 395:1409–1437

    Google Scholar 

  • Smartt SJ (2015) Observational constraints on the progenitors of core-collapse supernovae: the case for missing high-mass star. PASA – Publ Astron Soc Aust 32:16–37

    ADS  Google Scholar 

  • Steeghs D, Casares J (2002) The mass donor of scorpius X-1 revealed. ApJ 568:273–278

    Article  ADS  Google Scholar 

  • Strader J, Chomiuk L, Maccarone TJ, Miller-Jones JCA, Seth AC (2012) Two stellar-mass black holes in the globular cluster M22. Nature 490:71–73

    Article  ADS  Google Scholar 

  • Suárez-Andrés L, González Hernández JI, Israelian G, Casares J, Rebolo R (2015) Chemical abundances of the secondary star in the neutron star X-ray binary Cygnus X-2. MNRAS 447:2261–2273

    Article  ADS  Google Scholar 

  • Tomsick JA, Heindl WA, Chakrabarty D, Kaaret P (2002) Rotational Broadening Measurement for the Neutron Star X-Ray Transient XTE J2123-058. ApJ 581:570–576

    Article  ADS  Google Scholar 

  • Ugliano M, Janka H-T, Marek A, Arcones A (2012) Progenitor-explosion connection and remnant birth masses for neutrino-driven supernovae of iron-core progenitors. ApJ 757:69–78

    Article  ADS  Google Scholar 

  • van Paradijs J, White N (1995) The Galactic Distribution of Low-Mass X-Ray Binaries. ApJL 447:L33–L36

    ADS  Google Scholar 

  • van Paradijs J (1998) Neutron stars and black holes in X-ray binaries. In: Buccheri R, van Paradijs J, Alpar MA (eds) The Many Faces of Neutron Stars, vol 515. Kluwer Academic Publishers, ASIC, Dordrecht/Boston, p 279

    Chapter  Google Scholar 

  • Wade RA, Horne K (1988) The radial velocity curve and peculiar TiO distribution of the red secondary star in Z Chamaeleontis. ApJ 324:411–430

    Article  ADS  Google Scholar 

  • Wang L, Steeghs D, Casares J, Charles PA, Muñoz-Darias T, Marsh TR et al (2017, in press) System mass constraints for the accreting millisecond pulsar XTE J1814-338 using Bowen fluorescence. MNRAS, arXiv:1612.06430

    Google Scholar 

  • Wielen R (1977) The diffusion of stellar orbits derived from the observed age-dependence of the velocity dispersion. A&A 60:263–275

    ADS  Google Scholar 

  • Wijnands R, van der Klis M (1998) A millisecond pulsar in an X-ray binary system. Nature 394:344–346

    Article  ADS  Google Scholar 

  • Willems B, Henninger M, Levin T, Ivanova N, Kalogera V, McGhee K et al (2005) Understanding compact object formation and natal kicks. I. Calculation methods and the case of GRO J1655-40. ApJ 625:324–346

    Article  ADS  Google Scholar 

  • Witte MG, Savonije GJ (2001) Tidal evolution of eccentric orbits in massive binary systems. II. Coupled resonance locking for two rotating main sequence stars. A&A 366:840–857

    Google Scholar 

  • Wu J, Orosz JA, McClintock JE, Hasan I, BaiIyn CD, Gou L et al (2016) The mass of the black hole in the X-ray binary nova muscae 1991. ApJ 825:46–58

    Article  ADS  Google Scholar 

  • Zhang CM, Wang J, Zhao YH, Yin HX, Song LM, Menezes DP et al (2011) Study of measured pulsar masses and their possible conclusions. A&A 527:A83–A90

    Article  ADS  Google Scholar 

  • Zhang Z, Gilfanov M, Bogdán Á (2013) Low-mass X-ray binary populations in galaxy outskirts: globular clusters and supernova kicks. A&A 556:A9–A18

    Article  ADS  Google Scholar 

Download references

Acknowledgements

JC would like to thank the hospitality of the Department of Physics of the University of Oxford, where this work was performed during a sabbatical visit. He also thanks Phil Charles for useful comments and discussions. Finally, JC acknowledges support by DGI of the Spanish Ministerio de Educación, Cultura y Deporte under grants AYA2013-42627 and PR2015-00397, and from the Leverhulme Trust Visiting Professorship Grant VP2-2015-046. GI thanks Lucía Suárez and Jonay González Hernández for useful discussions. PGJ would like to thank James Miller–Jones for many useful discussions and his approval to use data on GX 339−4 and Swift J1753.0−0127 before their final publication. PGJ acknowledges funding from the European Research Council under ERC Consolidator Grant Agreement No. 647208.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Casares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Casares, J., Jonker, P.G., Israelian, G. (2017). X-Ray Binaries. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_111

Download citation

Publish with us

Policies and ethics