Skip to main content

Abstract

Tolerance to abiotic stress is an important agronomic trait in crops and is controlled by many genes/quantitative trait loci (QTLs). As abiotic stresses significantly affect grain yield, it is necessary to combat these stresses to minimize yield losses. The current status of the study of abiotic stress tolerance suggests the general role of some regulatory factors in the environmental adaptation mechanisms; therefore, it is also possible to find some common QTLs/genes influencing more than one type of stress at a time. Identification of these factors will not only contribute to the understanding of plant biology but also to achieve stable crop production around the world through breeding approaches. Recent functional genomics technologies have become the most useful tool for the understanding of tolerance to various abiotic stresses and the genetic enhancement of various crops is being carried out by through transfer of QTLs/genes using different approaches like marker assisted selection (MAS) genetic engineering. In view of the impressive progress in these areas in recent years, integration of biotechnological approaches like molecular breeding with conventional breeding should be the major emphasis to hasten the development of crops that are more tolerant to different abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe T, Guenzi AC, Martin B, Chushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams RM, Hurd BH, Lenhart S, Leary N (1998) Effects of global climate change on agriculture: an interpretative review. Clim Res 11(12):19–30

    Article  Google Scholar 

  • Agarwal P, Agarwal PK, Joshi AJ et al (2010) Overexpression of Pg DREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Prasad MNV (2012) Environmental adaptations and stress tolerance in plants in the era of climate change. Springer, New York

    Book  Google Scholar 

  • Ahmad R, Kim MD, Back KH et al (2008) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep 27(4):687–698

    Article  CAS  PubMed  Google Scholar 

  • Ali Y, Awan AR (2004) Influence of salinity at seedling stage and on yield and yield components of different rice lines. Int J Biol Biotechnol 1(2):175–179

    Google Scholar 

  • Ali Z, Salam A, Azhar M et al (2007) Genotypic variation in salinity tolerance among spring and winter wheat (Triticum aestivum L.) accessions. S Afr J Bot 73:70–75

    Article  CAS  Google Scholar 

  • Ali MA, Abbas A, Awan SI et al (2011) Correlated response of various morpho-physiological characters with grain yield in sorghum landraces at different growth phases. J Anim Plant Sci 21(4):671–679

    Google Scholar 

  • Almeida GD, Makumbi D, Magorokosho C et al (2013) QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126:583–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Altinkut A, Kazan K, Ipekci Z et al (2001) Tolerance to paraquat is correlated with the traits associated with water stress tolerance in segregating F2 populations of barley and wheat. Euphytica 121:81–86

    Article  Google Scholar 

  • Ammar MHM, Pandit A, Singh RK et al (2004) Mapping of QTLs controlling Na+, K+ and Cl– ion concentrations in salt tolerant indica rice variety CSR27. J Plant Biochem Biotechnol 18:139–150

    Article  Google Scholar 

  • Ananthi K, Vanangamudi M (2013) Foliar application of humic acid with brassinosteroid on chlorophyll content and yield of green gram [Vigna radiata (L.) Wilczek]. Legum Res 36(3):241–244

    Google Scholar 

  • Andaya VC, Mackill DJ (2003) QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica × indica cross. Theor Appl Genet 106:1084–1090

    CAS  PubMed  Google Scholar 

  • Angaji SA, Septiningsih EM, Mackill DJ et al (2009) QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica 172:159–168

    Article  Google Scholar 

  • Araus JL, Slafer GA, Royo C et al (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Article  Google Scholar 

  • Ashok Kumar A, Reddy BVS, Ramaiah B, Sharma R (2011) Heterosis in white-grained grain mold resistant sorghum hybrids. J SAT Agric Res 9:1–6

    Google Scholar 

  • Babu RC, Nguyen BD, Chamarerk V et al (2003) Genetic analysis of drought resistance in rice by molecular markers; association between secondary traits and field performance. Crop Sci 43:1457–1469

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Fukao T, Ronald P et al (2010) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3:138–147

    Article  Google Scholar 

  • Banziger M, Edmeades GO, Beck D (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. CIMMYT, Mexico

    Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    CAS  PubMed  Google Scholar 

  • Barthakur S, Babu V, Bansal KC (2001) Over-expression of osmotin induces proline accumulation and confers tolerance to osmotic stress in transgenic tobacco. J Plant Biochem Biotechnol 10:31–37

    Article  CAS  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva. www.ipcc.ch/ipccreports/tp-climate-change-water.htm

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    Article  CAS  PubMed  Google Scholar 

  • Baum M, Grando S, Backes G et al (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ x H. spontaneum 41–1. Theor Appl Genet 107:1215–1225

    Article  CAS  PubMed  Google Scholar 

  • Beales J, Laurie DA, Devos KM (2005) Allelic variation at the linked AP1 and PhyC loci in hexaploid wheat is associated but not perfectly correlated with vernalization response. Theor Appl Genet 110:1099–1107

    Article  CAS  PubMed  Google Scholar 

  • Beck EH, Fettig S, Knake C et al (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    Google Scholar 

  • Berberich T, Uebeler M, Feierabend J (2000) cDNA cloning of cytoplasmic ribosomal protein S7 of winter rye (Secale cereale) and its expression in low-temperature-treated leaves. Biochim Biophys Acta 1492:276–279

    Article  CAS  PubMed  Google Scholar 

  • Bibi A, Sadaqat HA, Akram HM et al (2010) Physiological markers for screening sorghum (Sorghum bicolor) germplasm under water stress condition. Int J Agric Biol 12:451–455

    Google Scholar 

  • Bihani P, Char B, Bhargava S (2011) Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 149:95–101

    Article  CAS  Google Scholar 

  • Borrell AK, Hammer GL, Van Oosterom E (2001) Stay-green: a consequence of the balance between supply and demand for nitrogen during grain filling? Ann Appl Biol 138:91–95

    Article  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowers JE, Schertz KE, Abbey C et al (2000) A high-density 2399-locus genetic map of sorghum. Poster paper presented during the conference plant and animal genome VIII (San Diego, 9–12 January 2000)

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Brini F, Gaxiola RA, Berkowitz GA et al (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol Biochem 43:347–354

    Article  CAS  PubMed  Google Scholar 

  • Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53:13–25

    Article  CAS  PubMed  Google Scholar 

  • Burger WC (1981) Why are there so many kinds of flowering plants? BioScience 31(572):577–581

    Google Scholar 

  • Burgos MST, Messmer MM, Stamp P et al (2001) Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.) a physiological and genetic approach. Euphytica 122(2):287–295

    Article  Google Scholar 

  • Cao L, Zhao J, Zhan X et al (2003) Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice. Chin J Rice Sci 17(3):223–227

    CAS  Google Scholar 

  • Cattivelli L, Rizza F, Badeck FW et al (2008) Drought tolerance improvement in crop plants: an integrative view from breeding to genomics. Field Crop Res 105:1–14

    Article  Google Scholar 

  • Ceccarelli S (1994) Specific adaptation and breeding for marginal conditions. Euphytica 77:205–219

    Article  Google Scholar 

  • Champoux MC, Wang G, Sarkaruag S et al (1995) Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet 90:969–981

    Article  CAS  PubMed  Google Scholar 

  • Chang TT, Somrith B, O’Toole JC (1979) Potential of improving drought resistance in rainfed lowland rice. In: Rainfed lowland rice: selected papers from the 1978 international rice research conference. IRRI, Los Banos, pp 149–164

    Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    Article  CAS  PubMed  Google Scholar 

  • Chen JQ, Meng XP, Zhang Y et al (2008a) Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett 30:2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Chen QQ, Yu SB, Li CH et al (2008b) Identification of QTLs for heat tolerance at flowering stage in rice. Sci Agric Sin 41:315–321

    CAS  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    Article  CAS  PubMed  Google Scholar 

  • Choi H, Hong J, Ha J et al (2000) ABFs, a family of ABA responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Choi D, Kim JH, Kende H (2004) Whole genome analysis of the OsGRF gene family encoding plant-specific putative transcription activators in rice (Oryza sativa L.). Plant Cell Physiol 45(7):897–904

    Article  CAS  PubMed  Google Scholar 

  • Collard B, Mackill DJ (2008) Marker–assisted selection: an approach for precision breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363(1491):557–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colom MR, Vazzana C (2003) Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping love grass plants. Environ Exp Bot 49:135–144

    Article  CAS  Google Scholar 

  • Cominelli E, Tonelli C (2010) Transgenic crops coping with water scarcity. New Biotechnol 27:473–477

    Article  CAS  Google Scholar 

  • Courtois B, McLaren G, Sinha PK et al (2000) Mapping QTLs associated with drought avoidance in upland rice. Mol Breed 6:55–66

    Article  CAS  Google Scholar 

  • Courtois B, Shen L, Petalcorin W et al (2003) Location QTLs controlling constitutive root traits in the rice population IAC 165 × Co39. Euphytica 134:335–345

    Article  CAS  Google Scholar 

  • Dai L, Lin XH, Ye CR et al (2004) Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice. Breed Sci 54:253–258

    Article  CAS  Google Scholar 

  • Dhanda SS, Sethi GS, Behl RK (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci 190:1–6

    Article  Google Scholar 

  • Dubcovsky J, Maria GS, Epstein E et al (1996) Mapping of the K+/Na+ discrimination locus in wheat. Theor Appl Genet 92:448–454

    Article  CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  PubMed  Google Scholar 

  • Egawa C, Kobayashi F, Ishibashi M et al (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91

    Article  CAS  PubMed  Google Scholar 

  • Ejeta G, Knoll JE (2007) Marker–assisted selection in sorghum. In: Varshney RK, Tubersoa R (eds) Genomic-assisted crop improvement, vol 2, Genomics applications in crops. Springer, Netherlands, pp 187–205

    Google Scholar 

  • Ekanayake IJ, O’Toole JC, Garrity DP et al (1985) Inheritance of root characters and their relations to drought resistance in rice. Crop Sci 25:927–933

    Article  Google Scholar 

  • El Soda M, Nadakuduti SS, Pillen K et al (2010) Stability parameter and genotype mean estimates for drought stress effects on root and shoot growth of wild barley pre-introgression lines. Mol Breed 26:583–593

    Article  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E et al (1996) Aintegumenta, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2006) World agriculture: towards 2030/2050. Interim report. Global perspective studies unit. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2014) World food situation (http://www.fao.org/worldfoodsituation/csdb/en/)

  • FAO [Food and Agricultural Organization of the United Nations], ICRISAT [International Crops Research Institute for the Semi-Arid Tropics] (1996) The world sorghum economies: facts, trends and outlook. FAO/ICRISAT, Rome

    Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farsiani A, Ghobadi ME (2009) Effects of PEG and NaCl stress on two cultivars of corn (Zea mays L.) at germination and early seedling stages. World Acad Sci Eng Technol 57:382–385

    Google Scholar 

  • Fischer KS, Lafitte R, Fukai S et al (eds) (2003) Breeding rice for drought-prone environments. IRRI, Los Baños

    Google Scholar 

  • Forster BP, Phillips MS, Miller TE et al (1990) Chromosome location of genes controlling tolerance to salt (NaCl) and vigour in Hordeum vulgare and H. chilense. Heredity 65:99–107

    Article  Google Scholar 

  • Forster BP, Ellis RP, Thomas WTB et al (2000) The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot 51:19–27

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Rizza F, Cattivelli L et al (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) x‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Sekiguchi H, Sato T et al (2004) Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor Appl Genet 108:794–799

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Maruyama K et al (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39(6):863–876

    Article  CAS  PubMed  Google Scholar 

  • Fukai S, Basnayake J, Cooper M (2001) Modelling water availability, crop growth, and yield of rainfed lowland rice genotypes in northeast Thailand. In: Tuong TP, Kam SP, Wade L et al (eds) Proceedings of the international workshop on characterizing and understanding rainfed environments, Bali, Indonesia, 5–9 December 5–9, 1999. IRRI, Los Baños, pp 111–130

    Google Scholar 

  • Fukao T, Bailey-Serres J (2008) Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellins responses in rice. Proc Natl Acad Sci U S A 105:16814–16819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Xu K, Ronald PC et al (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Yeung E, Bailey-Serres J (2011) The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23(1):412–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A et al (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159

    Article  CAS  PubMed  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J et al (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  PubMed  Google Scholar 

  • Gana JA, Sutton F, Kenefick DG (1997) cDNA structure and expression patterns a low-temperature-specific wheat gene tacr7. Plant Mol Biol 34:643–650

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Oldach K, Verbyla AP et al (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894

    Article  CAS  PubMed  Google Scholar 

  • Gill RK, Sharma AD, Singh P et al (2002) Osmotic stress induced changes in germination, growth and soluble sugar content of Sorghum bicolor (L.) Moench seeds. Bulg J Plant Physiol 28:12–25

    Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP et al (2000) Over-expression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54

    Article  CAS  Google Scholar 

  • Govindaraj P, Arumugachamy S, Maheswaran M (2005) Bulked segregant analysis to detect main effect QTL associated with grain quality parameters in Basmati 370/ASD16 cross in rice (Oryza sativa L.) using SSR markers. Euphytica 144:61–68

    Article  CAS  Google Scholar 

  • Gowda PSB, Xu GW, Frederiksen RA et al (1995) DNA markers for downy mildew resistance genes in sorghum. Genome 38:823–826

    Article  CAS  PubMed  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J et al (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  CAS  PubMed  Google Scholar 

  • Graner AE, Baur J, Chojecki A et al (1996) Molecular mapping of genes for disease resistance in barley. In: Scoles G, Rossnagel D (eds) Proceedings of the V international Oat conference & VII international barley genetics symposium. Poster Session Vol. 1, Saskatoon, Canada, University Extension Press, Saskatoon, Sakatchewan, pp 253–255

    Google Scholar 

  • Greenbio (2011) Rice and climate change. Checkbiotech. Available at: http://greenbio.checkbio.org/news/rice_and_climate_change

  • Gregorio GB, Senadhira D, Mendoza RD (1997) Screening rice for salinity tolerance. IRRI discussion paper series no. 22

    Google Scholar 

  • Gunes A, Inal A, Alpaslan M et al (2005) Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Arch Agric Soil Sci 51:687–695

    Article  CAS  Google Scholar 

  • Gupta P, Langridge P, Mir R (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26(2):145–161

    Article  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471

    Article  CAS  PubMed  Google Scholar 

  • Gyenis L, Yun SJ, Smith KP et al (2007) Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome 50:714–723

    Article  CAS  PubMed  Google Scholar 

  • Hanson B, Grattan SR, Fulton A (1999) Agricultural salinity and drainage, vol 3375. University of California Division of Agriculture and Natural Resources Publication, Oakland

    Google Scholar 

  • Hao DY, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plants. J Biol Chem 273:26857–26861

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress related signal transduction. J Exp Bot 50:413–434

    CAS  Google Scholar 

  • Harris D, Tripathi RS, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: Pandey S, Mortimer M, Wade L et al (eds) Direct seeding: research strategies and opportunities. IRRI, Manila, pp 231–240

    Google Scholar 

  • Harushima Y, Yano M, Shomura A et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S et al (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Nagai K, Ashikari M (2011) Rice growth adapting to deepwater. Curr Opin Biol 14:100–105

    Article  Google Scholar 

  • Hayes PM, Chen FQ, Corey A et al (1997) The Dicktoo x Morex population: a model for dissecting components of winterhardiness in barley. In: Li PH, Chen THH (eds) Plant cold hardiness. Plenum, New York, pp 77–87

    Chapter  Google Scholar 

  • Hayes PM, Castro A, Marquez-Cedillo L et al (2003) Genetic diversity for quantitative inherited agronomic and malting quality traits. In: Von-Bothmer R et al (eds) Diversity in barley. Elsevier, Amsterdam, pp 201–226

    Google Scholar 

  • Hetherington A, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Hollung K, Espelund M, Jakobsen KS (1994) Another Lea B19 gene group 1 barley containing a single 20 amino acid hydrophilic motif. Plant Mol Biol 25:559–564

    Article  CAS  PubMed  Google Scholar 

  • Hoshida H, Tanaka Y, Hibino T et al (2000) Enhanced tolerance to salt stress in transgenic rice that over expresses chloroplast glutamine synthetase. Plant Mol Biol 43:103–111

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Cho JI, Han M et al (2010) The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice. J Plant Physiol 167:1512–1520

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY et al (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YX, Wang YX, Liu XF et al (2004) Arabidopsis RAVI is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res 14:8–15

    Article  CAS  PubMed  Google Scholar 

  • IFAD (2009) Drought, coping mechanisms and poverty: insights from rainfed rice farming in Asia. The seventh in a series of discussion papers produced by the Asia and the Pacific Division, International Fund for Agricultural Development, Rome

    Google Scholar 

  • IFPRI (2001) Pilot analysis of global ecosystems (PAGE) agro-ecosystems, . International Food Policy Research Institute (IFPRI). Washington, DC

    Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol 47:377–403

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change (2007) synthesis report. International Panel on Climate Change Report. Cambridge University Press, Cambridge

    Google Scholar 

  • IRRI (2010) Scuba rice: breeding flood-tolerance to Asia’s local mega rice varieties. IRRI, Los Baños

    Google Scholar 

  • Islam MR, Salam MA, Hassan L et al (2011) QTL mapping for salinity tolerance at seedling stage in rice. J Food Agric 23:137–146

    Article  Google Scholar 

  • Ismail AM, Ella ES, Vergara GV et al (2009) Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa.L). Ann Bot 103:197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Katsura K, Maruyama K et al (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47:141–153

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot 91:227–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagadish SVK, Cairns J, Lafitte R (2010) Genetic analysis of heat tolerance at anthesis in rice. Crop Sci 50:1633–1641

    Article  CAS  Google Scholar 

  • Jain D, Roy N, Chattopadhyay D (2009) CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance. Proc Natl Acad Sci U S A 4:e5154

    Google Scholar 

  • Jander G, Norris SR, Rounsley SD et al (2002) Arabidopsis map-based cloning in the post–genome era. Plant Physiol 129:440–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang IC, Oh SJ, Seo JS et al (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang CS, Lee HJ, Chang SJ et al (2004) Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.). Plant Sci 167:995–1001

    Article  CAS  Google Scholar 

  • Jena KK, Kim SM, Suh JP et al (2010). Development of cold-tolerant breeding lines using QTL analysis in rice. Second Africa rice congress, Bamako, 22–26 March 2010, Innovation and partnerships to realize Africa’s rice potential

    Google Scholar 

  • Jeong JS, Kim YS, Baek KH et al (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Z, Lian Y, Zhu Y et al (2009) Cloning and characterization of a putative transcription factor induced by abiotic stress in Zea mays. Afr J Biotechnol 8:6764–6771

    CAS  Google Scholar 

  • Jiang GH, He YQ, Xu CG et al (2004) The genetic basis of stay-green in rice analysed in a population of doubled haploid lines derived from an indica by japonica cross. Theor Appl Genet 108:688–698

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Xun M, Wang J et al (2008) QTL analysis of cold tolerance at seedling stage in rice (Oryza sativa L.) using recombination inbred lines. J Cereal Sci 48:173–179

    Article  CAS  Google Scholar 

  • Jiang SY, Bhalla R, Ramamoorthy R et al (2012) Over-expression of OSRIP18 increases drought and salt tolerance in transgenic rice plants. Transgenic Res 21(4):785–795

    Article  CAS  PubMed  Google Scholar 

  • Jin XF, Jiong AS, Peng RH et al (2010) OsAREB1, an ABRE binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB Rep 43:34–39

    Article  CAS  PubMed  Google Scholar 

  • Jongdee B, Cooper M (1998) Genetic variation for grain yield of rice under water deficit condition. In: Proceedings of the 9th Australian agronomy conference, Wagga Wagga

    Google Scholar 

  • Jongdee B, Fukai S, Cooper M (2002) Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res 76:153–163

    Article  Google Scholar 

  • Kader MA, Seidel T, Golldack D et al (2006) Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars. J Exp Bot 57:4257–4268

    Article  CAS  PubMed  Google Scholar 

  • Kamolsukyunyong W, Ruanjaichon V, Siangliw M et al (2001) Mapping of quantitative trait locus related to submergence tolerance in rice with aid of chromosome walking. DNA Res 8(4):163–171

    Article  CAS  PubMed  Google Scholar 

  • Kamoshita A, Wade LJ, Ali M et al (2002) Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet 104:880–893

    Article  CAS  PubMed  Google Scholar 

  • Kamoshita A, Babu RC, Boopathi NM, Fukai S (2008) Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res 109:1–23

    Article  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW et al (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karim S, Aronsson H, Ericson H et al (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    Article  CAS  PubMed  Google Scholar 

  • Karsai I, Meszaros K, Lang L et al (2001) Multivariate analysis of traits determining adaptation in cultivated barley. Plant Breed 120:217–222

    Article  Google Scholar 

  • Kaya MD, Okçub G, Ataka M et al (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    Article  CAS  Google Scholar 

  • Kaydan D, Yagmur M (2008) Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCl. Afr J Biotechnol 7(16):2862–2868

    CAS  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT et al (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L.). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Khalid AO, Tang B, Wang Y et al (2013) Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS One 8–11:e79305

    Google Scholar 

  • Khayatnezhad M, Gholamin R, Jamaatie-Somarin SH et al (2010) Effects of PEG stress on corn cultivars (Zea mays L.) at germination stage. World Appl Sci J 11(5):504–506

    Google Scholar 

  • Kholova J, Nepolean T, Tom Hash C et al (2012) Water saving traits co-map with a major terminal drought tolerance quantitative trait locus in pearl millet [Pennisetum glaucum (L.) R. Br.]. Mol Breed 30:1337–1353

    Article  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    Article  CAS  PubMed  Google Scholar 

  • Kilian A, Kudrna DA, Kleinhofs A et al (1995) Rice-barley synteny and its application to saturation mapping of the barley Rpg1 region. Nucl Acids Res 23:2729–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirigwi FM, Van Ginkel M, Brown-Guedira G et al (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    Article  CAS  Google Scholar 

  • Kishor PBK, Sangam S, Amrutha RN et al (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    CAS  Google Scholar 

  • Kleinhofs A, Graner A (2001) An integrated map of the barley genome. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants. Kluwer, Dordrecht, pp 187–199

    Chapter  Google Scholar 

  • Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116:577–587

    Article  PubMed  Google Scholar 

  • Kobayashi F, Takumi S, Nakata M et al (2004) Comparative study of the expression profiles of the Cor/Lea gene family in two wheat cultivars with contrasting levels of freezing tolerance. Physiol Plant 120:585–594

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi F, Takumi S, Kume S et al (2005) Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot 56:887–895

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi F, Ishibashi M, Takumi S (2008) Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Res 17:755–767

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Dong J, Hart GE (2000) Isolation, characterization and linkage mapping of Sorghum bicolor (L.) Moench DNA simple sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Kosova K, Prasil IT, Prasilova P et al (2010) The development of frost tolerance and DHN5 protein accumulation in barley (Hordeum vulgare) doubled haploid lines from Atlas 68 × Igri cross during cold acclimation. J Plant Physiol 167:343–350

    Article  CAS  PubMed  Google Scholar 

  • Kota R, Wolf M, Michalek W et al (2001) Application of denaturing high-performance liquid chromatography for mapping of single nucleotide polymorphisms in barley (Hordeum vulgare L.). Genome 44:523–528

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Sehgal SK, Kumar U et al (2012) Genomic characterization of drought tolerance-related traits in spring wheat. Euphytica 186:265–276

    Article  CAS  Google Scholar 

  • Kuroki M, Saito K, Matsuba S et al (2007) Quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8. Theor Appl Genet 115:593–600

    Article  PubMed  Google Scholar 

  • Lafitte HR, Courtois B, Arraudeau M (2002) Genetic improvement of rice in aerobic systems: progress from yield to genes. Field Crops Res 75:171–190

    Article  Google Scholar 

  • Lafitte HR, Price AH, Courtois B (2004) Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet 109:1237–1246

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Uphoff N, Stewart BA et al (2005) Climate change and global food security. Taylor & Francis Group, CRC Press, Boca Raton

    Book  Google Scholar 

  • Lanceras JC, Pantuwan G, Jongdee B et al (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laperche A, Devienne-Barret F, Maury O et al (2006) A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet 113:1131–1146

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  PubMed  Google Scholar 

  • Leishman MR, Westoby M (1994) The role of seed size in seedling establishment in dry soil conditions, experimental evidence from semi-arid species. J Ecol 82(2):249–258

    Article  Google Scholar 

  • Li ZY, Chen SY (2000) Isolation and characterization of a salt- and drought-inducible gene for S-adenosylmethionine decarboxylase from wheat (Triticum aestivum L.). Plant Physiol 156:386–393

    CAS  Google Scholar 

  • Li B, Song AC, Li N et al (2008) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol J 6(2):146–159

    Article  CAS  PubMed  Google Scholar 

  • Li P, Ponnala L, Gandotra N et al (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Lilley JM, Fukai S (1994) Effect of timing and severity of water deficit on four diverse rice cultivars. I. Rooting pattern and soil water extraction. Field Crops Res 37:205–213

    Article  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants: functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Sun C, Tan L et al (2003) Identification and mapping of quantitative trait loci controlling cold tolerance of Chinese common wild rice (O. rufipogon Griff.) at booting to flowering stages. Chin Sci Bull 48:2068–2071

    Article  Google Scholar 

  • Liu JX, Liao DQ, Oane R et al (2006) Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. Field Crops Res 97:87–100

    Article  Google Scholar 

  • Liu L, Hu X, Song J et al (2009) Over-expression of a Zea mays L. protein phosphatase 2C gene (ZmPP2C) in Arabidopsis thaliana decreases tolerance to salt and drought. J Plant Physiol 166:531–542

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Subhash C, Yan J et al (2011) Maize leaf temperature responses to drought: thermal imaging and quantitative trait loci (QTL) mapping. Environ Exper Bot 71:158–165

    Article  Google Scholar 

  • Liu AL, Zou J, Liu CF et al (2013) Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice. BMB Rep 46(1):31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lou Q, Chen L, Sun Z et al (2007) A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 158:87–94

    Article  CAS  Google Scholar 

  • Lu Y, Hao Z, Xie C et al (2011) Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop Res 124:37–45

    Article  Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical-evaluation of traits for improving crop yields in water–limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  • Luo M, Gu SH, Zhao SH et al (2006) Rice GTPase OsRacB: potential accessory factor in plant salt-stress signaling. Acta Biochim Biophys Sin 38:393–402

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Yang A, Zhang K et al (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    Article  CAS  Google Scholar 

  • Ma HX, Bai GH, Carver BF et al (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112:51–57

    Article  CAS  PubMed  Google Scholar 

  • Maas EV, Grattan SR (1999) Crop yields as affected by salinity. In: Skaggs RW, van Schilfgaarde J (eds) Agricultural drainage. Agronomy monograph 38. ASA, CSSA, SSA, Madison, pp 55–108

    Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S et al (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum L) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackill D, Coffman W, Rutger J (1982) Pollen shedding and combining ability for high temperature tolerance in rice. Crop Sci 22:730–733

    Article  Google Scholar 

  • Mackill DJ, Collard BCY, Neeraja CN et al (2006) QTLs in rice breeding: examples for abiotic stresses. In: Brar DS, Mackill DJ, Hardy B (eds) Rice genetics 5: proc Int rice genetics symposium. IRRI, Manila, pp 155–167

    Google Scholar 

  • Mackill DJ, Ismail AM, Pamplona AM et al (2010) Stress-tolerant rice varieties for adaptation to a changing climate. Crop Environ Bioinform 7:250–259

    Google Scholar 

  • Mahalakshmi V, Bidinger FR, Raju DS (1987) Effect of timing of water deficit on pearl millet (Pennisetum americanum). Field Crops Res 15:327–339

    Article  Google Scholar 

  • Mani S, Van de Cotte B, Montagu M et al (2002) Altered levels of proline dehydrogenase cause hypersensitivity to praline and its analogs in Arabidopsis. Plant Physiol 128:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Omori F, Takamizo T et al (2007) QTL mapping of root aerenchyma formation in seedlings of a maize x rare teosinte “Zea nicaraguensis” cross. Plant Soil 295:103–113

    Article  CAS  Google Scholar 

  • Mathews KL, Malosetti M, Chapman S et al (2008) Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet 117:1077–1091

    Article  PubMed  Google Scholar 

  • Matsui T, Omasa K (2002) Rice cultivars tolerant to high temperature at flowering: anther characteristics. Ann Bot 89:683–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsui T, Namuco O, Ziska L et al (1997a) Effect of high temperature and CO2 concentration on spikelet sterility in Indica rice. Field Crops Res 51:213–219

    Article  Google Scholar 

  • Matsui T, Omasa K, Horie T (1997b) High temperature induced spikelet sterility of japonica rice at flowering in relation to air humidity and wind velocity conditions. Jpn J Crop Sci 66:449–455

    Article  Google Scholar 

  • Matsui T, Omasa K, Horie T (2001) The differences in sterility due to high temperature during the flowering period among japonica rice varieties. Plant Prod Sci 4:90–93

    Article  Google Scholar 

  • McCouch SR, Teytelman L, Xu Y et al (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  CAS  PubMed  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM et al (2005) Repressorand activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntyre CL, Mathews KL, Rattey A et al (2009) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541

    Article  PubMed  CAS  Google Scholar 

  • McKay JK, Richards JH, Nemali KS et al (2008) Genetics of drought adaptation in Arabidopsis thaliana II. QTL analysis of a new mapping population, Kas-1 x Tsu-1. Evolution 62:3014–3026

    Article  PubMed  Google Scholar 

  • Messmer R, Fracheboud Y, Banziger M et al (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTL across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  PubMed  Google Scholar 

  • Messmer R, Fracheboud Y, Banziger M et al (2011) Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crops Res 124:93–103

    Article  Google Scholar 

  • Miles CM, Wayne M (2008) Quantitative trait locus (QTL) analysis. Nat Educ 1(1):208

    Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Lin SY, Yano M et al (2001) Mapping quantitative trait loci controlling low temperature germinability in rice (Oryza sativa L.). Breed Sci 51:293–299

    Article  CAS  Google Scholar 

  • Morita S, Yonemaru JI, Takanashi JI (2005) Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann Bot 95:695–701

    Article  PubMed  PubMed Central  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T et al (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  • Motomura Y, Fuminori K, Iehisa Julio CM et al (2013) A major quantitative trait locus for cold–responsive gene expression is linked to frost-resistance gene Fr-A2 in common wheat. Breed Sci 63:58–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T et al (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neeraja C, Maghirang-Rodriguez R, Pamplona A et al (2007) A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet 115:767–776

    Article  CAS  PubMed  Google Scholar 

  • Nellemann C, MacDevette M, Manders T et al (2009) The environmental food crisis – the environment’s role in averting future food crises. A UNEP rapid response assessment. Arendal, Norway, United Nations Environment Programme, GRID, Arendal

    Google Scholar 

  • Nelson DE, Repetti PP, Adams TR et al (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water–limited acres. Proc Natl Acad Sci U S A 104:16450–16455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nezhad KZ, Weber WE, Roder MS et al (2012) QTL analysis for thousand-grain weight under terminal drought stress in bread wheat (Triticum aestivum L.). Euphytica 186(1):127–138

    Article  Google Scholar 

  • Nguyen TT, Klueva N, Chamareck V et al (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genomics 272:35–46

    Article  CAS  Google Scholar 

  • Nguyen VL, Simon R, Dolstra O et al (2013) Identification of quantitative trait loci for ion homeostasis and salt tolerance in barley (Hordeum vulgare L.). Mol Breed 31:137–152

    Article  CAS  Google Scholar 

  • Oh SJ, Kwon CW, Choi DW et al (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656

    Article  CAS  PubMed  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW et al (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150:1368–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno R, Takumi S, Nakamura C (2003) Kinetics of transcript and protein accumulation of a low–molecular-weight wheat LEA D-11 dehydrin in response to low temperature. J Plant Physiol 160:193–200

    Article  CAS  PubMed  Google Scholar 

  • Okamura JK, Caster B, Villarroel R et al (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci U S A 94:7076–7081

    Article  Google Scholar 

  • Oram PA (1989) Views on the new global context for agricultural research: implications for policy. In: Climate and food security. IRRO, Manila, pp 3–23

    Google Scholar 

  • Ouk M, Basnayake J, Tsubo M et al (2006) Use of drought response index for identification of drought tolerant genotypes in rainfed lowland rice. Field Crops Res 99:48–58

    Article  Google Scholar 

  • Pandey S, Bhandari H (2007) Drought: an overview. In: Pandey S, Bhandari H, Hardy B (eds) Economic costs of drought and rice farmers’ coping mechanisms: a cross-country comparative analysis. IRRI, Los Banos, pp 11–30

    Google Scholar 

  • Pantuwan G, Fukai S, Cooper M et al (2002) Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands, Part 1. Grain yield and yield components. Field Crops Res 73:153–168

    Article  Google Scholar 

  • Park MR, Yun KY, Mohanty B et al (2010) Supra-optimal expression of the cold–regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. Plant Cell Environ 33:2209–2230

    Article  CAS  PubMed  Google Scholar 

  • Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117

    Article  CAS  PubMed  Google Scholar 

  • Patterson AH, Lin Y, Li Z et al (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Google Scholar 

  • Pellegrineschi A, Reynolds M, Paceco M et al (2004) Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47:493–500

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Huang J, Sheehy JE et al (2004) Rice yield decline with higher night temperature from global warming. In: Redona ED, Castro AP, Llanto GP (eds) Rice integrated crop management: towards a RiceCheck system in the Philippines. PhilRice, Nueva Ecija, pp 46–56

    Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer WH, Trethowan RM, Van Ginkel M et al (2005) Breeding for abiotic stress tolerance in wheat. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth Press, New York, pp 401–489

    Google Scholar 

  • Pillen K, Binder A, Kreuzkam B et al (2000) Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor Appl Genet 101:652–660

    Article  CAS  Google Scholar 

  • Prasad P, Boote K, Allen L et al (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411

    Article  Google Scholar 

  • Price AH, Tomos AD (1997) Genetic dissection of root growth in rice (Oryza sativa L.) II. mapping quantitative trait loci using molecular markers. Theor Appl Genet 95:143–152

    Article  CAS  Google Scholar 

  • Price AH, Steele KA, Moore BJ et al (2002) Upland rice grown in soil-filled chambers and exposed to contrasting water deficit regimes, mapping quantitative trait loci for root morphology and distribution. Field Crops Res 76:25–43

    Article  Google Scholar 

  • Qiao WH, Zhao XY, Li W et al (2007) Over-expression of AeNHX1, a root-specific vacuolar Na+ /H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and festuca plants. Plant Cell Rep 26:1663–1672

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y et al (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69

    Article  CAS  PubMed  Google Scholar 

  • Quan R, Shang M, Zhang H et al (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Gulli M, Calestani C et al (1994) Location of a gene regulating drought-induced abscisic acid production on the long arm of chromosome 5 A of wheat. Theor Appl Genet 89:794–800

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Laurie DA, Zhu J (1997) QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparison across cereals. Plant Mol Biol 35:155–165

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C et al (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from cross Chinese Spring x SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Quarrie SP, Radosevic R et al (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  CAS  PubMed  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H et al (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Grover A, Peacock WJ et al (2001) Effects of manipulation of pyruvate decarboxylase and alcohol dehydrogenase levels on the submergence tolerance of rice. Aust J Plant Physiol 28:1231–1241

    CAS  Google Scholar 

  • Rajendran RA, Muthiah AR, Manickam A et al (2011) Indices of drought tolerance in sorghum (Sorghum bicolor L.) genotypes at early stages of plant growth. Res J Agric Biol Sci 7:42–46

    Google Scholar 

  • Ram PC, Singh BB, Singh AK et al (2002) Submergence tolerance in rainfed lowland rice: physiological basis and prospects for cultivar improvement through marker-aided breeding. Field Crops Res 76(2):131–152

    Article  Google Scholar 

  • Ramsay L, Macaulay M, degli Ivanissevich S et al (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rashotte AM, Mason MG, Hutchison CE et al (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci U S A 103:11081–11085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rauf S (2008) Breeding sunflower (Helianthus annuus L.) for drought tolerance. Commun Biometry Crop Sci 3(1):29–44

    Google Scholar 

  • Ray JD, Yu C, McCouch S et al (1996) Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.). Theor Appl Genet 92:627–636

    Article  CAS  PubMed  Google Scholar 

  • Reinheimer JL, Barr AR, Eglinton JK (2004) QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 109:1267–1274

    Article  CAS  PubMed  Google Scholar 

  • Ren ZH, Gao JP, Li LG et al (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  CAS  PubMed  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D et al (1997) Identification of quantitative trait loci under drought conditions in tropical maize 1. Yield components and marker assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Robin S, Pathan MS, Courtois B et al (2003) Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theor Appl Genet 107:1288–1296

    Article  CAS  PubMed  Google Scholar 

  • Rosenow DT (1987) Breeding sorghum for drought resistance. In: Menyonga JM, Bezune T, Yuodeowei A (eds) Proceedings of the international drought symposium. OAU/STRCSAFGRAD Coordination Office, Ouagadougou, pp 19–23

    Google Scholar 

  • Rosenow DT, Ejeta G, Clark LE et al (1996) Breeding for pre- and post-flowering drought stress resistance in sorghum. In: Rosenow DT, Yohe JM (eds) Proceedings of the international conference on genetic improvement of sorghum and pearl millet. Lubbock, TX, 22–27 September 1996, INTSORMIL, Lubbock/ICRISAT, India, pp 400–411

    Google Scholar 

  • Ruanjaichon V, Toojinda T, Tragoonrung S et al (2008) Physiological and molecular characterization of rice isogenic line for Sub QTL9 under flash flooding. J Plant Sci 3:236–247

    Article  CAS  Google Scholar 

  • Sabehat A, Weiss D, Lurie S (1998) Heat-shock proteins and cross-tolerance in plants. Phys Planta 103:437–441

    Article  CAS  Google Scholar 

  • Sabouri H, Sabouri A (2008) New evidence of QTLs attributed to salinity tolerance in rice. Afr J Biotechnol 7(24):4376–4383

    CAS  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J et al (2000) Over expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Miura K, Nagano K et al (1995) Chromosomal location of quantitative trait loci for cool tolerance at the booting stage in rice variety Norin-PL8. Breed Sci 45:337–340

    Google Scholar 

  • Saito K, Miura K, Nagano K et al (2001) Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theor Appl Genet 103:862–868

    Article  CAS  Google Scholar 

  • Saito K, Hayano-Saito Y, Maruyama-Funatsuki W et al (2004) Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice. Theor Appl Genet 109:515–522

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Hayano-Saito Y, Kuroki M, Sato Y (2010) Map-based cloning of the rice cold tolerance gene Ctb1. Plant Sci 179(1):97–102

    Article  CAS  Google Scholar 

  • Sakamoto A, Alia, Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and to erance to salt and cold. Plant Mol Biol 38:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Maruyama K, Sakuma Y et al (2004) Arabidopsis Cys2/His2-type zinc finger proteins function as transcription repressors under drought, cold and high-salinity stress conditions. Plant Physiol 136:2734–2746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem KFM, Roder MS, Borner A (2007) Identification and mapping quantitative trait loci for stem reserve mobilization in wheat (Triticum aestivum L.). Cereal Res Commun 35:1367–1374

    Article  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trend Plant Sci 10:297–304

    Article  CAS  Google Scholar 

  • Satake T, Hayase H (1970) Male sterility caused by cooling treatment at the young microspore stage in rice plants. V. Estimation of pollen developmental stage and the most sensitive stage to coolness. Proc Crop Sci Soc Jpn 39:468–473

    Article  Google Scholar 

  • Schulte D, Close TJ, Graner A et al (2009) The international barley sequencing consortium – at the threshold of efficient access to the barley genome. Plant Physiol 149:142–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki M, Narusaka M, Ishida J et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Septiningsih EM, Pamplona AM, Sanchez DL et al (2009) Development of submergence tolerant rice cultivars: the Sub1 locus and beyond. Ann Bot 103:151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Septiningsih EM, Sanchez DL, Singh N et al (2012) Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theor Appl Genet 124:867–874

    Article  PubMed  Google Scholar 

  • Serraj R, Kumar A, McNally KL et al (2009) Improvement of drought resistance in rice. In: Sparks D (ed) Advances in agronomy, vol 103. Elsevier, Newark, pp 41–99

    Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005) Changes of anti-oxidative enzymes and MDA content under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at maturation stage. Colloids Surf B Biointerfaces 45(1):7–13

    Article  CAS  Google Scholar 

  • Shen YG, Zhang WK, He SJ et al (2003a) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930

    CAS  PubMed  Google Scholar 

  • Shen YG, Zhang WK, Yan DQ et al (2003b) Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor Appl Genet 107:155–161

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular response to drought and cold stress. Curr Opin Plant Biol 7:161–167

    CAS  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Shunwu Y, Fengxian L, Feiming W et al (2012) Identification of rice transcription factors associated with drought tolerance using the ecotilling method. PLoS ONE 7(2)

    Google Scholar 

  • Siangliw M, Toojinda T, Tragoonrung S et al (2003) Thai jasmine rice carrying QTL ch9 (SubQTL) is submergence tolerant. Ann Bot 91:255–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Mackill DJ, Ismail AM (2009) Responses of SUB1 rice introgression lines to submergence in the field: yield and grain quality. Field Crop Res 113:12–23

    Article  Google Scholar 

  • Sripongpangkul K, Posa GBT, Senadhira DW et al (2000) Genes/QTLs affecting flood tolerance in rice. Theor Appl Genet 101:1074–1081

    Article  CAS  Google Scholar 

  • Stoskopf NC (1985) Cereal grain crops. Reston Publishing Company, Reston

    Google Scholar 

  • Struss D, Pliescke J (1998) The use of microsatellite markers for detection of genetic diversity in barley populations. Theor Appl Genet 97:308–315

    Article  CAS  Google Scholar 

  • Suh JP, Jeung JU, Lee JI et al (2010) Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theor Appl Genet 120:985–995

    Article  CAS  PubMed  Google Scholar 

  • Sutka J, Galiba G, Vagujfalvi A et al (1999) Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using deletion lines. Theor Appl Genet 99(1):199–202

    Google Scholar 

  • Swamy BM, Vikram P, Dixit S et al (2011) Metaanalysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics 12:319

    Article  PubMed  PubMed Central  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Tacconi G, Baldassarre V, Collins NC et al (2006) Haplotype characterization and markers at the barley Mlo powdery mildew resistance locus as tools for marker-assisted selection. Genome 49:864–872

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology. Sinauer Associates, Sunderland

    Google Scholar 

  • Takeuchi Y, Hayasaka H, Chiba B et al (2001) Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate japonica rice. Breed Sci 51:191–197

    Article  CAS  Google Scholar 

  • Takumi S, Ohno R, Kobayashi F et al (2003) Cultivar differences in cold acclimation/freezing tolerance and Cor gene expression in common wheat. Proc X Int Wheat. Genet Symp Paestum 3:1269–1271

    Google Scholar 

  • Tanaka K, Hibino T, Hayasi Y et al (1999) Salt tolerance of transgenic roce over expression yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Tao Z, Liu H, Qiu D et al (2009) A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol 151:936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taramino G, Tarchini R, Ferrario S et al (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72

    Article  CAS  Google Scholar 

  • Teulat B, Zoumarou-Wallia N, Rotter B et al (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188

    Article  CAS  PubMed  Google Scholar 

  • Thiel T, Michalek W, Varshney RK et al (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422

    CAS  PubMed  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Thomson MJ, de Ocampo M, Egdane J et al (2010) Characterizing the saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Article  Google Scholar 

  • Tondelli A, Francia E, Barabaschi D et al (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112:445–454

    Article  CAS  PubMed  Google Scholar 

  • Toojinda T, Siangliw M, Tragroonrung S et al (2003) Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann Bot 91:243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathy JN, Zhang J, Robin S et al (2000) QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theor Appl Genet 100:1197–1202

    Article  CAS  Google Scholar 

  • Truntzler M, Barriere Y, Sawkins MC et al (2010) Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor Appl Genet 121:1465–1482

    Article  CAS  PubMed  Google Scholar 

  • Tsubo M, Basnayake J, Fukai S et al (2006) Toposequential effects on water balance and productivity in rainfed lowland rice ecosystem in Southern Laos. Field Crops Res 97:209–220

    Article  Google Scholar 

  • Tsvetanov S, Ohno R, Tsuda K et al (2000) A cold-responsive wheat (Triticum aestivum L.) gene wcor14 identified in a winter-hardy cultivar ‘Mironovska 808’. Genes Genet Syst 75:49–57

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Salvi S (2009) QTL for agronomic traits in maize production. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, New York, pp 501–541

    Chapter  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC et al (2002) Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot 89:941–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: an approach for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011

    Article  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough PB (1998) Evaluation of near-isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Sci 38:835–842

    Article  Google Scholar 

  • Uga Y, Okuno K, Yano M (2011) Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J Exp Bot 62(8):2485–2494

    Article  CAS  PubMed  Google Scholar 

  • Vaghefi N, Nasir Samsudin M, Makmom A et al (2001) The economic impact of climate change on the rice production in Malaysia. Int J Agric Res 6(1):67–74

    Google Scholar 

  • Vágújfalvi A, Galiba G, Cattivelli L et al (2003) The cold regulated transcriptional activator Cbf3 is linked to the frost tolerance locus Fr-A2 on wheat chromosome 5A. Mol Gen Genome 269:60–67

    Google Scholar 

  • Varshney RK, Grosse I, Hahnel U et al (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows non uniform distribution of genes in the barley genome. Theor Appl Genet 113:239–250

    Article  CAS  PubMed  Google Scholar 

  • Venuprasad R, Bool ME, Dalid CO et al (2009) Genetic loci responding to two cycles of divergent selection for grain yield under drought stress in a rice breeding population. Euphytica 167:261–269

    Article  CAS  Google Scholar 

  • Von Zitzewitz J, Szucs P, Dubcovsky J et al (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467

    Article  CAS  Google Scholar 

  • Wade LJ, Kamoshita A, Yamauchi A et al (2000) Genotypic variation in response of rain fed lowland rice to drought and re watering I. growth and water use. Plant Prod Sci 3(2):173–179

    Article  Google Scholar 

  • Wan L, Zhang J, Zhang H et al (2011) Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS ONE 6:e25216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Guan Y, Wu Y et al (2008) Over expression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  PubMed  Google Scholar 

  • Wassmann R, Dobermann A (2007) Climate change adoption through rice production in regions with high poverty levels. ICRISAT and CGIAR 35th Anniversary Symposium on climate–proofing innovation for poverty reduction and food security 22–24 November 2007. SAT eJournal 4(1):1–24

    Google Scholar 

  • Wassmann R, Hien NX, Hoanh CT, Tuong TP (2004) Sea level rise affecting Vietnamese Mekong delta: water elevation in flood season and implications for rice production. Clim Chang 66(1):89–107

    Article  Google Scholar 

  • Wassmann P, Duartew CM, Agusti S et al (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Chang Biol 17:1235–1249

    Article  Google Scholar 

  • Waugh R, Bonar N, Baird E et al (1997) Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255(3):311–321

    Article  CAS  PubMed  Google Scholar 

  • Welch JR, Vincent JR, Auffhammer M et al (2010) Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. PNAS 17(33):14562–14567

    Article  Google Scholar 

  • Wenzl P, Li H, Carling J et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and phenotypic traits. BMC Genomics 7:206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weyen J, Bauer E, Graner A et al (1996) RAPD mapping of the distal portion of chromosome 3 of barley including the BaMMV/BaYMV resistance gene ym4. Plant Breed 115:285–287

    Article  CAS  Google Scholar 

  • Winfield MO, Lu C, Wilson ID et al (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotechnol J 8:749–771

    Article  CAS  PubMed  Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ et al (2008) Breeding for abiotic stresses for sustainable agriculture. Phil Trans R Soc Lond B Biol Sci 363:703–716

    Article  CAS  Google Scholar 

  • Woodward FI, Lake JA, Quick WP (2002) Stomatal development and CO2: ecological consequences. New Phytol 153:477–484

    Article  CAS  Google Scholar 

  • Xiang Y, Tang N, Du H et al (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Pan Y, Luo L et al (2011) Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice. Euphytica 178:331–338

    Article  Google Scholar 

  • Xin Z, Browse J (2001) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Xiong L, Karen S, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Article  CAS  Google Scholar 

  • Xiong L, Wang R, Mao G et al (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xu K, Mackill DJ (1996) A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed 2:219–224

    Article  CAS  Google Scholar 

  • Xu JL, Lafitte HR, Gao YM et al (2005) QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet 111:1642–1650

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Xia X, Fukao T et al (2006) Sub1A is an ethylene response factor–like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Xue DW, Zhoe MX, Zhang XQ et al (2010) Identification of QTLs for yield and yield components of barley under different growth conditions. J Zhejiang Univ Sci B 11(3):169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR et al (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor Appl Genet 104:67–83

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptiona regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G et al (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100:6263–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wu J, Zhu K et al (2009) Identification and characterization of two chrysanthemum (Dendronthema × morifolium) DREB genes, belonging to the AP2/EREBP family. Mol Biol Rep 36:71–81

    Article  CAS  PubMed  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H et al (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  PubMed  CAS  Google Scholar 

  • Ye C, Fukai S, Godwin DI et al (2010) QTL controlling low temperature induced spikelet sterility at booting stage in rice. Euphytica 176:291–301

    Article  Google Scholar 

  • Ye C, Argayoso MA, Redona ED et al (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed 131:33–41

    Article  CAS  Google Scholar 

  • Yet S, Moffatt BA, Griffith M et al (2000) Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol 124:1251–1263

    Article  Google Scholar 

  • Yue B, Xue WY, Xiong LZ et al (2006) Genetic basis of drought resistance at reproductive stage in rice:separation of drought tolerance from drought avoidance. Genetics 172:1213–1228

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng L, Shannon MC (2000) Salinity effects on the seedling growth and yield components of rice. Crop Sci 40:996–1003

    Article  Google Scholar 

  • Zeng YW, Yang SM, Cui H et al (2009) QTLs of cold tolerance-related traits at the booting stage for NIL-RILs in rice revealed by SSR. Genes Genom 31:143–154

    Article  Google Scholar 

  • Zhang JZ (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    Article  CAS  Google Scholar 

  • Zhang J, Zheng HG, Aarti A et al (2001) Location genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet 103:19–29

    Article  CAS  Google Scholar 

  • Zhang T, Yang L, Jang KF et al (2008) QTL mapping for heat tolerance of the tassel period of rice. Mol Plant Breed 6:867–873

    CAS  Google Scholar 

  • Zhang H, Mao X, Wang C et al (2010) Over-expression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE 5(12):e16041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Xiao S, Li W et al (2011) Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. J Exp Bot 62(12):4229–4238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Zhang L, Xiao Y et al (2006) Identification of QTLs for heat tolerance at the booting stage in rice. Acta Agron Sin 32:640–644

    CAS  Google Scholar 

  • Zheng HG, Babu RC, Pathan MS et al (2000) Quantitative trait loci for root penetration ability and root thickness in rice: comparison of genetic back grounds. Genome 43:53–61

    Article  CAS  PubMed  Google Scholar 

  • Zheng BS, Yang L, Zhang WP et al (2003) Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet 107:1505–1515

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Chen B, Lu G et al (2009) Over-expression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–277

    Article  CAS  Google Scholar 

  • Zhu J, Wang XP, Sun C et al (2011) Mapping of QTL associated with drought tolerance in a semi-automobile rain shelter in maize (Zea mays L.). Agric Sci China 10:987–996

    Article  Google Scholar 

  • Zou M, Guan Y, Ren H et al (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gundimeda J. N. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rao, G.J.N., Reddy, J.N., Variar, M., Mahender, A. (2016). Molecular Breeding to Improve Plant Resistance to Abiotic Stresses. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits. Springer, Cham. https://doi.org/10.1007/978-3-319-22518-0_8

Download citation

Publish with us

Policies and ethics