Skip to main content

Sonodynamic Therapy: Concept, Mechanism and Application to Cancer Treatment

  • Chapter
Therapeutic Ultrasound

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 880))

Abstract

Sonodynamic therapy (SDT) represents an emerging approach that offers the possibility of non-invasively eradicating solid tumors in a site-directed manner. It involves the sensitization of target tissues with a non-toxic sensitizing chemical agent and subsequent exposure of the sensitized tissues to relatively low-intensity ultrasound. Essentially, both aspects (the sensitization and ultrasound exposure) are harmless, and cytotoxic events occur when both are combined. Due to the significant depth that ultrasound penetrates tissue, the approach provides an advantage over similar alternative approaches, such as photodynamic therapy (PDT), in which less penetrating light is employed to provide the cytotoxic effect in sensitized tissues. This suggests that sonodynamic therapy may find wider clinical application, particularly for the non-invasive treatment of less accessible lesions. Early SDT-based approaches employed many of the sensitizers used in PDT, although the manner in which ultrasound activates the sensitizer differs from activation events in PDT. Here we will review the currently accepted mechanisms by which ultrasound activates sensitizers to elicit cytotoxic effects. In addition, we will explore the breath of evidence from in-vitro and in-vivo SDT-based studies, providing the reader with an insight into the therapeutic potential offered by SDT in the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhatnagar S, Schiffter H, Coussios CC (2014) Exploitation of acoustic cavitation-induced microstreaming to enhance molecular transport. J Pharm Sci 103:1903–1912

    Article  CAS  PubMed  Google Scholar 

  • Bianchi PP, Petz W, Luca F, Biffi R, Spinoglio G, Montorsi M (2014) Laparoscopic and robotic total mesorectal excision in the treatment of rectal cancer. Brief review and personal remarks. Front Oncol 4:98

    Article  PubMed Central  PubMed  Google Scholar 

  • Byun KT, Kim KY, Kwak HY (2005) Sonoluminescence characteristics from micron and submicron bubbles. J Korean Phys Soc 47:1010–1022

    Google Scholar 

  • Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:35–545

    Article  Google Scholar 

  • Chu KF, Dupuy DE (2014) Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 14:199–208

    Article  CAS  PubMed  Google Scholar 

  • Ding C, Da Xing D (2006) Studies on the sonosensitization mechanism of ultrasound with ATX-70 in sonodynamic therapy. Life Sci J 3:85–89

    CAS  Google Scholar 

  • Dolmans DEJGJ, Kadambi A, Hill JS, Flores KR, Gerber JN, Walker JP, Borel Rinkes IH, Jain RK, Fukumura D (2002) Targeting tumor vasculature and cancer cells in orthotopic breast tumor by fractionated dosing photodynamic therapy. Cancer Res 2:4289–4294

    Google Scholar 

  • Dougherty TJ, Grindley GB, Fiel R, Weishaupt KR, Boyle DG (1975) Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst 55:115–121

    CAS  PubMed  Google Scholar 

  • Fabi A, Mottolese M, Segatto O (2014) Therapeutic targeting of ERBB2 in breast cancer: understanding resistance in the laboratory and combating it in the clinic. J Mol Med 92:681–695

    Article  CAS  PubMed  Google Scholar 

  • Feril LB, Kondo T, Cui ZG, Tabuchi Y, Zhao QL, Ando H, Misaki T, Yoshikawa H, Umemura S (2005) Apoptosis induced by the sonomechanical effects of low intensity pulsed ultrasound in a human leukemia cell line. Cancer Lett 221:145–152

    Article  CAS  PubMed  Google Scholar 

  • Fukuzumi S, Ohkubo K, Zheng X, Chen Y, Pandley RK, Zhan R, Kadish KM (2008) Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators. J Phys Chem B 6:2733–2746

    Google Scholar 

  • Gaitan DF, Crum LA, Church CC, Roy RA (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166–3183

    Article  Google Scholar 

  • Guo S, Sun X, Cheng J, Xu H, Dan J, Shen J, Zhou Q, Zhang Y, Meng L, Cao W, Tian Y (2013) Apoptosis of THP-1 macrophages induced by protoporphyrin IX-mediated sonodynamic therapy. Int J Nanomedicine 8:2239–2246

    PubMed Central  PubMed  Google Scholar 

  • Hachimine K, Shibaguchi H, Kuroki M, Yamada H, Kinugasa T, Nakae Y, Asano R, Sakata I, Yamashita Y, Shirakusa T, Kuroki M (2007) Sonodynamic therapy of cancer using a novel porphyrin derivative, DCPH-P-Na(I), which is devoid of photosensitivity. Cancer Sci 98:916–920

    Article  CAS  PubMed  Google Scholar 

  • He Y, Xing D, Tan S, Tang Y, Ueda K (2002) In vivo sonoluminescence imaging with the assistance of FCLA. Phys Med Biol 47:1535–1541

    Article  PubMed  Google Scholar 

  • Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  CAS  PubMed  Google Scholar 

  • Herrera FG, Santa Cruz O, Achtari C, Bourhis J, Ozsahin M (2014) Long-term outcome and late side effects in endometrial cancer patients treated with surgery and postoperative radiation therapy. Ann Surg Oncol 21:2390–2397

    Article  PubMed  Google Scholar 

  • Hiraoka W, Honda H, Feril LB Jr, Kudo N, Kondo T (2006) Comparison between sonodynamic effect and photodynamic effect with photosensitizers on free radical formation and cell killing. Ultrason Sonochem 13:535–542

    Article  CAS  PubMed  Google Scholar 

  • Hiroishi K, Eguchi J, Toshiyuki B, Shimazaki T, Ishii S, Hiraide A, Sakaki M, Doi H, Uozomi S, Omori R, Matsumura T, Yanagawa T, Ito T, Imawari M (2010) Strong CD8+ T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol 45:451–458

    Article  CAS  PubMed  Google Scholar 

  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2014) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726

    Article  Google Scholar 

  • Hsieh YJ, Wu CC, Chang CJ, Yu JS (2003) Subcellular localization of Photofrin® determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J Cell Physiol 194:363–375

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Moseley H, Bown S (2010) Rationale of combined PDT and SDT modalities for treating cancer patients in terminal stage: the proper use of photosensitizer. Integr Cancer Ther 9:317–319

    Article  PubMed  Google Scholar 

  • Huang X, Yuan F, Liang M, Lo HW, Shinohara ML, Robertson C, Zhong P (2012) M-HIFU inhibits tumor growth, suppresses STAT3 activity and enhances tumor specific immunity in a transplant tumor model of prostate cancer. PLoS One 7, e41632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeong EJ, Seo SJ, Ahn YJ, Choi KH, Kim KH, Kim JK (2012) Sonodynamically induced antitumour effects of 5-aminolevulinic acid and fractionated ultrasound irradiation in an orthotopic rat glioma model. Ultrasound Med Biol 38:2143–2150

    Article  PubMed  Google Scholar 

  • Kawabata K, Umemura S (1997) Xanthene dyes for reducing acoustic cavitation threshold in aqueous solution. Ultrasonics 35:469–474

    Article  CAS  Google Scholar 

  • Kenyon JN, Fulle RJ, Lewis TJ (2009) Activated cancer therapy using light and ultrasound – a case series of sonodynamic photodynamic therapy in 115 patients over a 4 year period. Curr Drug Ther 4:179–193

    Article  CAS  Google Scholar 

  • Kessel D, Vicente MG, Reiners JJ (2006) Initiation of apoptosis and autophagy by photodynamic therapy. Lasers Surg Med 38:482–488

    Article  PubMed Central  PubMed  Google Scholar 

  • Kolarova H, Tomankova K, Bajgar R, Kolar P, Kubinek R (2009) Photodynamic and sonodynamic treatment by phthalocyanine on cancer cell lines. Ultrasound Med Biol 35:1397–1404

    Article  PubMed  Google Scholar 

  • Komori C, Okada K, Kawamura K, Chida S, Suzuki T (2009) The sonodynamic antitumor effect of methylene blue on sarcoma180 cells in vitro. Anticancer Res 29:2411–2416

    CAS  PubMed  Google Scholar 

  • Kondo Y, Kanzawa T, Sawaya T, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    Article  CAS  PubMed  Google Scholar 

  • Kuroki M, Hachimine K, Abe H, Shibaguchi H, Kuroki M, Maekawa S, Yanagisawa J, Kinugasa T, Tanaka T, Yamashita Y (2007) Sonodynamic therapy of cancer using novel sonosensitisers. Anticancer Res 27:3673–3678

    CAS  PubMed  Google Scholar 

  • Li JH, Song DY, Xu YG, Huang Z, Yue W (2008a) In vitro study of hematoporphyrin monomethyl ether-mediated sonodynamic effects on C6 glioma cells. Neurol Sci 29:229–235

    Article  CAS  PubMed  Google Scholar 

  • Li YS, Reid CN, McHale AP (2008b) Enhancing ultrasound-mediated cell membrane permeabilisation (sonoporation) using a high frequency pulse regime and implications for ultrasound-aided cancer chemotherapy. Cancer Lett 266:156–162

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang P, Zhao P, Zhu S, Wang X, Liu Q (2012) Apoptosis induced sonodynamic treatment by protoporphyrin IX MDA-MB-231 cells. Ultrasonics 52:490–496

    Article  CAS  PubMed  Google Scholar 

  • Li D, Kang J, Madoff DC (2014a) Locally ablative therapies for primary and metastatic liver cancer. Expert Rev Anticancer Ther 14:931–945

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Liu Q, Wang P, Feng X, Wang H, Wang X (2014b) The effects of Ce6-mediated sono-photodynamic therapy on cell migration, apoptosis and autophagy in mouse mammary 4T1 cell line. Ultrasonics 54:981–989

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang P, Wang X, Su X, Liu Q (2014c) Involvement of mitochondrial and reactive oxygen species in the sonodynamic toxicity of chlorin e6 in human leukemia K562 cells. Ultrasound Med Biol 40:990–1000

    Article  PubMed  Google Scholar 

  • Liu S, Kurzrock R (2014) Toxicity of targeted therapy: implications for response and impact of genetic polymorphisms. Cancer Treat Rev 40:883–891

    Article  CAS  PubMed  Google Scholar 

  • Liu QH, Wang XB, Wang P, Xiao L, Hao Q (2007) Comparison between sonodynamic effect with protoporphyrin IX and hematoporphyrin on sarcoma 180. Cancer Chemother Pharmacol 60:671–680

    Article  CAS  PubMed  Google Scholar 

  • Macdonald IJ, Dougherty TJ (2001) Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines 5:105–129

    Article  CAS  Google Scholar 

  • Master A, Livingston M, Sen Gupta A (2013) Potodynamic nanomedicine in the treatment of solid tumors: perspectives and challenges. J Control Release 168:88–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCaughan B, Rouanet C, Fowley C, Nomikou N, McHale AP, McCarron PA, Callan JF (2011) Enhanced ROS production and cell death through combined photo- and sono-activation of conventional photosensitising drugs. Bioorg Med Chem Lett 21:5750–5752

    Article  CAS  PubMed  Google Scholar 

  • McEwan C, Owen J, Stride E, Fowley C, Nesbitt H, Cochrane D, Coussios Constantin. C, Borden M, McHale AP, Callan JF (2015) Oxygen carrying microbubbles for enhanced sonodynamic therapy of hypoxic tumours. J Controlled Release 203:51–56

    Google Scholar 

  • Meng Y, Zou C, Madiyalakan R, Woo T, Huang M, Yang X, Swanson E, Chen J, Xing JZ (2010) Water-soluble and biocompatible sono/photosensitizer nanoparticles for enhanced cancer therapy. Nanomedicine 5:1559–1569

    Article  CAS  PubMed  Google Scholar 

  • Misik V, Riesz P (2000) Free radical intermediates in sonodynamic therapy. Ann N Y Acad Sci 899:335–348

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi N, Igarashi T, Riesz P (2000) Evidence against singlet oxygen formation by sonolysis of aqueous oxygen-saturated solutions of hematoporphyrin and rose bengal. The mechanism of sonodynamic therapy. Ultrason Sonochem 7:121–124

    Article  CAS  PubMed  Google Scholar 

  • Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553

    Article  CAS  PubMed  Google Scholar 

  • Mokuyasu S, Suzuki Y, Kawahara E, Seto T, Tokuda Y (2014) High-sensitivity cardiac troponin I detection for 2 types of drug-induced cadiotoxicity in patients with breast cancer. Breast Cancer (in press) DOI: 10.1007/s12282-014-0520-8

    Google Scholar 

  • Moseley H, Eljamel S Moghissi K (2014) Sonodynamic therapy. http://www.yorkshirelasercentre.org/index.php/sonodynamic-therapy. Accessed 26 June 2014

  • Narang AS, Varia S (2011) Role of tumor vascular architecture in drug delivery. Adv Drug Deliv Rev 63:640–658

    Article  CAS  PubMed  Google Scholar 

  • Ni Y, Mulier S, Miao Y, Michel L, Marchal G (2005) A review of the general aspects of radiofrequency ablation. Abdom Imaging 30:381–400

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa H, Osaki Y (2013) Comparison of high-intensity focused ultrasound therapy and radiofrequency ablation for recurrent hepatocellular carcinoma. Hepatobiliary Surg Nutr 2:168–170

    PubMed Central  PubMed  Google Scholar 

  • Nomikou N, Li YS, McHale AP (2010) Ultrasound-enhanced drug dispersion through solid tumours and its possible role in aiding ultrasound-targeted cancer chemotherapy. Cancer Lett 288:94–98

    Article  CAS  PubMed  Google Scholar 

  • Nomikou N, Fowley C, Byrne NM, McCaughan B, McHale AP, Callan JF (2012a) Microbubble-sonosensitiser conjugates as therapeutics in sonodynamic therapy. Chem Commun 48:8332–8334

    Article  CAS  Google Scholar 

  • Nomikou N, Sterrett C, Arthur C, McCaughan B, Callan JF, McHale AP (2012b) The effects of ultrasound and light on indocyanine-green-treated tumour cells and tissues. ChemMedChem 7:1465–1471

    Article  CAS  PubMed  Google Scholar 

  • Nonaka M, Yamamoto M, Yoshino S, Umemura S, Sasaki K, Fukushima T (2009) Sonodynamic therapy consisting of focused ultrasound and a photosensitiser causes a selective antitumor effect in a rat intracranial glioma model. Anticancer Res 29:943–950

    PubMed  Google Scholar 

  • Ohmura T, Fukushima T, Shibaguchi H, Yoshizawa S, Inoue T, Kuroki M, Sasaki K, Umemura S (2011) Sonodynamic therapy with 5-aminolevulinic acid and focused ultrasound for deep-seated intracranial glioma in rat. Anticancer Res 31:2527–2534

    CAS  PubMed  Google Scholar 

  • Osaki T, Tajima M, Okamoto Y, Takagi S, Tsuka T, Imagawa T, Minami S (2011) Sonodynamic antitumor effect of benzoporphyrin derivative monoacid ring a on KLN205 cells. J Cancer Ther 2:99–104

    Article  CAS  Google Scholar 

  • Pickworth MJW, Dendy PP, Leighton TG, Twentyman PR (1988) Studies of the cavitational effects of clinical ultrasound by sonolumenescence: 2. Thresholds for sonoluminescence from a therapeutic ultrasound beam and the effect of temperature and duty cycle. Phys Med Biol 33:1249–1260

    Article  Google Scholar 

  • Ren Y, Wang R, Liu Y, Guo H, Zhou X, Yuan X, Liu C, Tian J, Yin H, Wang Y, Zhang N (2014) A hematoporphyrin-based drug delivery system for drug resistance reversal and tumor ablation. Biomaterials 35:2462–2470

    Article  CAS  PubMed  Google Scholar 

  • Roberts D, Cairnduff F, Driver I, Dixon B, Brown S (1994) Tumor vascular shutdown following photodynamic therapy based on polyhematoporphyrin or 5-aminolevulinic acid. Int J Oncol 5:763–768

    CAS  PubMed  Google Scholar 

  • Rodriguez N, Sanz X, Dengra J, Foro P, Membrive I, Reig A, Quera J, Fernandez-Velilla E, Pera O, Lio J, Lozano J, Algara M (2013) Five-year outcomes, cosmesis and toxicity with 3-dimensional conformal external beam radiation therapy to deliver accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys 87:1051–1057

    Article  PubMed  Google Scholar 

  • Rosenthal I, Sostaric JZ, Riesz P (2004) Sonodynamic therapy – a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem 11:349–363

    CAS  PubMed  Google Scholar 

  • Saksena TK, Nyborg WL (1970) Sonoluminescence from stable cavitation. J Chem Phys 53:1722–1733

    Article  CAS  Google Scholar 

  • Sazgarnia A, Shanei A, Meibodi NT, Eshghi H, Nassirli H (2011) A novel sonosensitizer for sonodynamic therapy: in vivo study on a colon tumor model. J Ultrasound Med 30:1321–1329

    PubMed  Google Scholar 

  • Sazgarnia A, Shanei A, Eshghi H, Hassanzadeh-Khayyat M, Esmaily H, Shanei MM (2013) Detection of sonoluminescence signals in a gel phantom in the presence of protoporphyrin IX conjugated to gold nanoparticles. Ultrasonics 53:29–35

    Article  CAS  PubMed  Google Scholar 

  • Sciacovelli M, Gaude E, Hilvo M, Frezza C (2014) The metabolic alterations of cancer cells. Methods Enzymol 542:1–23

    Article  CAS  PubMed  Google Scholar 

  • Shanei A, Sazgarnia A, Meibodi N, Hassanzadeh-Khayyat M, Esmaily H, Attaran Kakhki N (2012) Sonodynamic therapy using protoporphyrin IX conjugated to gold nanoparticles: an in vivo study on a colon tumor model. Iran J Basic Med Sci 15:759–767

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shi H, Liu Q, Qin X, Wang P, Wang X (2011) Pharmacokinetic study of a novel sonosensitizer chlorin-e6 and its sonodynamic anti-cancer activity in hepatoma-22 tumor-bearing mice. Biopharm Drug Dispos 32:319–332

    Article  PubMed  Google Scholar 

  • Siemann DW (2011) The unique characteristics of tumour vasculature and preclinical evidence for its selective disruption of tumour-vascular disrupting agents. Cancer Treat Rev 37:63–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Starkey JR, Rebane AK, Drobizhev MA, Meng F, Gong A, Elliot A, McInnerney K, Splangler CW (2008) New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment though the body of the host mouse. Clin Cancer Res 14:6564–6573

    Article  CAS  PubMed  Google Scholar 

  • Stepniewski M, Kepczynski M, Jamroz D, Nowakowska M, Rissanen S, Vattulainen I, Rog T (2012) Interaction of hematoporphyrin with lipid membranes. J Phys Chem B 116:4889–4897

    Article  CAS  PubMed  Google Scholar 

  • Sugita N, Kawabata K, Sasaki K, Sakata I, Umemura S (2007) Synthesis of amphiphilic derivatives of rose bengal and their tumor accumulation. Bioconjug Chem 18:866–873

    Article  CAS  PubMed  Google Scholar 

  • Sugita N, Iwase Y, Yumita N, Ikeda T, Umemura S (2010) Sonodynamically induced cell damage using rose bengal derivative. Anticancer Res 30:3361–3366

    CAS  PubMed  Google Scholar 

  • Suzuki N, Okada K, Chida S, Komori C, Shimada Y, Suzuki T (2007) Antitumor effect of acridine orange under ultrasonic irradiation in vitro. Anticancer Res 27:4179–4184

    CAS  PubMed  Google Scholar 

  • Tachibana K, Feril LB, Ikeda-Dantsuji Y (2008) Sonodynamic therapy. Ultrasonics 24:253–259

    Article  Google Scholar 

  • Tang W, Liu Q, Wang X, Mi N, Wang P, Zhang J (2008) Membrane fluidity altering and enzyme inactivating in sarcoma 180 cells post the exposure to sonoactivated hematoporphyrin in vitro. Ultrasonics 48:66–73

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Liu Q, Wang X, Wang P, Zhang J, Cao B (2009) Potential mechanism in sonodynamic therapy and focused ultrasound induced apoptosis in sarcoma 180 cells in vitro. Ultrasonics 49:86–793

    Article  CAS  Google Scholar 

  • Tonder M, Eisele G, Weiss T, Hofer Sm Seystahl K, Valavanis A, Stupp R, Weller M, Roth P (2014) Addition of lomustine for bevacizumab-refractory recurrent glioblastoma. Acta Oncol 26:1–4

    Google Scholar 

  • Torchilin V (2001) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    Article  Google Scholar 

  • Tran Cao HS, Lopez N, Chang DC, Lowy A, Bouvet M, Baumgartner JM, Talamini MA, Sicklick JK (2014) Improved perioperative outcomes with minimally invasive distal pancreatectomy: results from a population-based study. JAMA Surg 149:237–243

    Article  PubMed  Google Scholar 

  • Tserkovsky DA, Alexandrova EN, Chalau VN, Istomin YP (2012) Effects of combined sonodynamic and photodynamic therapies with photolon on a glioma C6 tumor model. Exp Oncol 34:332–335

    CAS  PubMed  Google Scholar 

  • Umemura S, Yumita N, Nishigaka R, Umemura K (1990) Mechanism of cell damage by ultrasound in combination with hematoporphyrin. Jpn J Cancer Res 81:962–966

    Article  CAS  PubMed  Google Scholar 

  • Umemura S, Kawabata K, Nishigaki R, Umemura K (1992) Sonodynamic approach to tumor treatment. Proc IEEE Ultrason Symp 9:1231–1240

    Google Scholar 

  • Umemura S, Yumita N, Umemura K, Nishigaki R (1999) Sonodynamically induced effect of rose bengal on isolated sarcoma 180 cells. Cancer Chemother Pharmacol 43:389–393

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lewis TJ, Mitchell D (2008) The tumoricidal effect of sonodynamic therapy (SDT) on S-180 sarcoma in mice. Integr Cancer Ther 7:96–102

    Article  CAS  Google Scholar 

  • Wang X, Zhang W, Xu Z, Luo Y, Mitchell D, Moss RW (2009) Sonodynamic and photodynamic therapy in advanced breast carcinoma: a report of 3 cases. Integr Cancer Ther 8:283–287

    Article  PubMed  Google Scholar 

  • Wang X, Liu Q, Wang Z, Wang P, Zhao P, Zhao X, Yang L, Li Y (2010) Role of autophagy in sonodynamic therapy-induced cytotoxicity in S180 cells. Ultrasound Med Biol 36:1933–1946

    Article  PubMed  Google Scholar 

  • Wrenn SP, Small E, Dan N (2013) Bubble nucleation in lipid bilayers: a mechanism for low frequency ultrasound disruption. Biochim Biophys Acta 1828:1192–1197

    Article  CAS  PubMed  Google Scholar 

  • Xiang J, Xia X, Leung AW, Wang X, Xu J, Wang P, Yu H, Bai D, Xu C (2011) Apoptosis of ovarian cancer cells induced by methylene blue-mediated sonodynamic action. Ultrasonics 1:390–395

    Article  Google Scholar 

  • Xu ZY, Wang K, Li XQ, Chen S, Deng JM, Cheng Y, Wang ZG (2013) The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells. Ultrasonics 53:232–238

    Article  CAS  PubMed  Google Scholar 

  • Yoshino SI, Fukushima T, Hayashi S, Nanola M, Ogawa K, Sasaki K, Umemura S (2009) Effects of focused ultrasound sonodynamic treatment on the rat blood-brain barrier. Anticancer Res 29:889–896

    PubMed  Google Scholar 

  • Yumita N, Umemura S (2004a) Sonodynamic antitumour effect of chloroaluminum phthalocyanine tetrasulfonate on murine solid tumor. J Pharm Pharmacol 56:85–90

    Article  CAS  PubMed  Google Scholar 

  • Yumita N, Umemura S (2004b) Ultrasonically induced cell damage and membrane lipid peroxidation by photofrin II: mechanism of sonodynamic activation. J Med Ultrason 31:35–40

    Article  Google Scholar 

  • Yumita N, Nishigaki R, Umemura K, Umemura S (1989) Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn J Cancer Res 80:219–222

    Article  CAS  PubMed  Google Scholar 

  • Yumita N, Nishigaki R, Umemura K, Umemura S (1990) Synergistic effect of ultrasound and hematoporphyrin on sarcoma 180. Jpn J Cancer Res 81:304–308

    Article  CAS  PubMed  Google Scholar 

  • Yumita N, Sasaki K, Umemura S, Nishigaki R (1996) Sonodynamically induced antitumor effect of a gallium-porphyrin complex, ATX-70. Jpn J Cancer Res 87:310–316

    Article  CAS  PubMed  Google Scholar 

  • Yumita N, Okuyama N, Sasaki K, Umemura S (2007) Sonodynamic therapy on chemically induced mammary tumor: pharmacokinetics, tissue distribution and sonodynamically induced antitumor effect of gallium-porphyrin complex ATX-70. Cancer Chemother Pharmacol 60:891–897

    Article  CAS  PubMed  Google Scholar 

  • Yumita N, Han QS, Kitazumi I, Umemura S (2008) Sonodynamically-induced apoptosis, necrosis, and active oxygen generation by mono-l-aspartyl chlorin e6. Cancer Sci 99:166–172

    CAS  PubMed  Google Scholar 

  • Yumita N, Iwase Y, Nishi K, Ikeda T, Umemura S, Sakata I, Momose Y (2010) Sonodynamically induced cell damage and membrane lipid peroxidation by novel porphyrin derivative, DCPH-P-Na (I). Anticancer Res 30:2241–2246

    CAS  PubMed  Google Scholar 

  • Zheng L, Sun X, Zhu X, Lv F, Zhong Z, Zhang F, Guo W, Cao W, Yang L, Tian Y (2014) Apoptosis of THP-1 derived macrophages induced by sonodynamic therapy using a new sonosensitizer hydroxyl acetylated curcumin. PLoS One 9, e93133

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu B, Liu Q, Want Y, Wang X, Wang P, Zhang L, Su S (2010) Comparison of accumulation, subcellular location and sonodynamic cytotoxicity between hematoporphyrin and protoporphyrin IX in L1210 cells. Chemotherapy 56:403–410

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Callan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McHale, A.P., Callan, J.F., Nomikou, N., Fowley, C., Callan, B. (2016). Sonodynamic Therapy: Concept, Mechanism and Application to Cancer Treatment. In: Escoffre, JM., Bouakaz, A. (eds) Therapeutic Ultrasound. Advances in Experimental Medicine and Biology, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-319-22536-4_22

Download citation

Publish with us

Policies and ethics