Skip to main content

Metabolomics in Breast Cancer: Current Status and Perspectives

  • Chapter
  • First Online:
Novel Biomarkers in the Continuum of Breast Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((BCRF,volume 882))

Abstract

Metabolomics refers to the study of the whole set of metabolites in a biological sample that constitute a reflection of cellular functions. Cancer cells display significantly altered cellular processes, and thus metabolites, compared to normal cells. This can be detected in a number of ways, and is already exploited to a limited extent in the diagnosis of cancer. The host response to the tumor is perhaps equally important, as it either rejects or permits tumor growth, and this may also potentially result in a measurable metabolite signature. Analysis then of entire pools of metabolites may yield critical information about both tumor presence and host response, and represent a possible novel collective biomarker for cancer behaviour that could allow prediction of relapse, response to therapy, or progression. Isolating meaningful differences in the sea of metabolites and within the context of significant metabolic heterogeneity both within and between patients remains a great challenge. This chapter will review current metabolomic research in breast cancer, with a focus on efforts to translate the technology into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nicholson JK (2006) Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2:52. Epub 2006 Oct 3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shah SP, Roth A, Goya R et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395–399. doi:10.1038/nature10933

    CAS  PubMed  Google Scholar 

  3. Miller TW, Pérez-Torres M, Narasanna A et al (2009) Loss of Phosphatase and Tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to promote antiestrogen resistance in breast cancer. Cancer Res 69(10):4192–4201. doi:10.1158/0008-5472.CAN-09-0042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fu X, Creighton CJ, Biswal NC et al (2014) Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Res 16(5):430

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bollard ME, Stanley EG, Lindon JC et al (2005) NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed 18:143–162

    Article  CAS  PubMed  Google Scholar 

  6. Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561

    Article  CAS  PubMed  Google Scholar 

  7. Aimetti M, Cacciatore S, Graziano A et al (2012) Metabonomic analysis of saliva reveals generalized chronic periodontitis signature. Metabolomics 8:465–474

    Article  CAS  Google Scholar 

  8. Ivano Bertini I, Claudio Luchinat C, Massimo Miniati M et al (2014) Phenotyping COPD by 1 H NMR metabolomics of exhaled breath condensate. Metabolomics 10(2):302–311

    Google Scholar 

  9. Serkova NJ, Brown MS (2012) Quantitative analysis in magnetic resonance spectroscopy: from metabolic profiling to in vivo biomarkers. Bioanalysis 4(3):321–341. doi:10.4155/bio.11.320

    Article  CAS  PubMed  Google Scholar 

  10. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  11. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. doi:10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang C, Richardson AD, Smith JW et al (2007) A comparative metabolomics of breast cancer. Pac Symp Biocomput 181–92

    Google Scholar 

  13. Claudino WM, Quattrone A, Biganzoli L et al (2007) Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol 25(19):2840–2846

    Article  CAS  PubMed  Google Scholar 

  14. Tomlins A, Foxall PJ, Lindon J et al (1998) High resolution magic angle spinning 1 H nuclear magnetic resonance analysis of intact prostatic hyperplastic and tumor tissues. Anal Commun 35(3):113–115

    Article  CAS  Google Scholar 

  15. Cheng LL, Chang IW, Louis DN et al (1998) Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Res 58:1825–1832

    CAS  PubMed  Google Scholar 

  16. Garrod S, Humpfer E, Sprau lM et al (1999) High-resolution magic angle spinning 1 H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn Reson Med 41(6):1108–1118

    Article  CAS  PubMed  Google Scholar 

  17. Brown M, Dunn WB, Ellis DI et al (2005) A metabolome pipeline: from concept to data to knowledge. Metabolomics 1(1):39–51

    Article  CAS  Google Scholar 

  18. Liland KH (2011) Multivariate methods in metabolomics–from pre-processing to dimension reduction and statistical analysis. TrAC Trends Anal Chem 30:827–841

    Article  CAS  Google Scholar 

  19. Miller RG, Brown BW (1997) Beyond ANOVA: basics of applied statistics. Chapman & Hall/CRC, New York

    Google Scholar 

  20. Jolliffe IT (2012) Principal component analysis: a beginner’s guide—I. Introduction and application. Weather 45(10):375–382

    Article  Google Scholar 

  21. Cacciatore S, Luchinat C, Tenori L (2014) Knowledge discovery by accuracy maximization. Proc Natl Acad Sci U S A 111(14):5117–5122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Draper NR, Smith H (1998) Applied regression analysis (Wiley series in probability and statistics), 3rd edn. Wiley, Hoboken. doi:10.1002/9781118625590.scard

    Google Scholar 

  23. Wold S, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58(2):109–130

    Article  CAS  Google Scholar 

  24. Lowe D, Broomhead D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355

    Google Scholar 

  25. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  26. Cortes C, Vapnik V (1995) Support-vector networks. J Mach Learn Res 20(3):273–297

    Google Scholar 

  27. Hendriks MM, Eeuwijk FA, Jellema RH et al (2011) Data-processing strategies for metabolomics studies. TrAC Trends Anal Chem 30(10):1685–1698

    Article  CAS  Google Scholar 

  28. Hendriks MM, Smit S, Akkermans WL et al (2007) How to distinguish healthy from diseased? Classification strategy for mass spectrometry‐based clinical proteomics. Proteomics 7(20):3672–3680

    Article  CAS  PubMed  Google Scholar 

  29. Camacho D, de la Fuente A, Mendes P (2005) The origin of correlations in metabolomics data. Metabolomics 1:53–63. doi:10.1007/s11306-005-1107-3

    Article  CAS  Google Scholar 

  30. Thiele I, Swainston N, Fleming RMT et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotech 31:419–425. doi:10.1038/nbt.2488

    Article  CAS  Google Scholar 

  31. Ma HW, Sorokin A, Mazein A et al (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35(suppl 1):D521–D526. doi:10.1093/nar/gkl923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wallner-Liebmann S, Gralka E, Tenori L et al (2015) The impact of free or standardized lifestyle and urine sampling protocol on metabolome recognition accuracy. Genes Nutr 10(1):441

    Article  PubMed  PubMed Central  Google Scholar 

  34. Emwas A-H, Luchinat C, Turano P et al (2014) Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics. doi:10.1007/s11306-014-0746-7

    Google Scholar 

  35. Assfalg M, Bertini I, Colangiuli D et al (2008) Evidence of different metabolic phenotypes in humans. Proc Natl Acad Sci U S A 10:51420–1424

    Google Scholar 

  36. Bernini P, Bertini I, Luchinat C et al (2009) Individual human phenotypes in metabolic space and time. J Proteome Res 8:4264–4271

    Article  CAS  PubMed  Google Scholar 

  37. Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3(5):431–438

    Article  CAS  PubMed  Google Scholar 

  38. Budczies J, Pfitzner BM, Györffy B et al (2014) Glutamate enrichment as new diagnostic opportunity in breast cancer. Int J Cancer. doi:10.1002/ijc.29152

    Google Scholar 

  39. Mountford CE, Somorjai RL, Malycha P et al (2001) Diagnosis and prognosis of breast cancer by magnetic resonance spectroscopy of fine-needle aspirates analysed using a statistical classification strategy. Br J Surg 88(9):1234–1240

    Article  CAS  PubMed  Google Scholar 

  40. Lean C, Doran S, Somorjai RL et al (2004) Determination of grade and receptor status from the primary breast lesion by magnetic resonance spectroscopy. Technol Cancer Res Treat 3(6):551–556

    Article  PubMed  Google Scholar 

  41. Bathen TF, Jensen LR, Sitter B et al (2007) MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status. Breast Cancer Res Treat 104(2):181–189

    Article  PubMed  Google Scholar 

  42. Wei S, Liu L, Zhang J et al (2013) Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast cancer. Mol Oncol 7(3):297–307. doi:10.1016/j.molonc.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  43. Asiago VM, Alvarado LZ, Shanaiah N et al (2010) Early detection of recurrent breast cancer using metabolite profiling. Cancer Res 70(21):8309–8318. doi:10.1158/0008-5472.CAN-10-1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Houssami N, Ciatto S, Martinelli F et al (2009) Early detection of second breast cancers improves prognosis in breast cancer survivors. Ann Oncol 20(9):1505–1510. doi:10.1093/annonc/mdp037

    Article  CAS  PubMed  Google Scholar 

  45. Bonadonna G, Moliterni A, Zambetti M et al (2005) 30 years’ follow up of randomised studies of adjuvant CMF in operable breast cancer: cohort study. BMJ 330(7485):217

    Article  PubMed  PubMed Central  Google Scholar 

  46. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351(27):2817–2826

    Article  CAS  PubMed  Google Scholar 

  47. Fisher B, Jeong JH, Dignam J et al (2001) Findings from recent National Surgical Adjuvant Breast and Bowel Project adjuvant studies in stage I breast cancer. J Natl Cancer Inst Monogr 30(30):62–6

    Google Scholar 

  48. Lucci A, Hall CS, Lodhi AK et al (2012) Circulating tumor cells in non-metastatic breast cancer: a prospective study. Lancet Oncol 13:688–695

    Article  PubMed  Google Scholar 

  49. Oakman C, Tenori L, Claudino WM et al (2011) Identification of a serum-detectable metabolomic fingerprint potentially correlated with the presence of micrometastatic disease in early breast cancer patients at varying risks of disease relapse by traditional prognostic methods. Ann Oncol 22(6):1295–1301. doi:10.1093/annonc/mdq606

    Article  CAS  PubMed  Google Scholar 

  50. Tenori L, Oakman C, Morris PG et al (2015) Serum metabolomic profiles evaluated after surgery may identify patients with oestrogen receptor negative early breast cancer at increased risk of disease recurrence. Results from a retrospective study. Mol Oncol 9(1):128–139. doi:10.1016/j.molonc.2014.07.012. (Epub 2014 Aug 10)

    Article  CAS  PubMed  Google Scholar 

  51. Jobard E, Pontoizeau C, Blaise BJ et al (2014) A serum nuclear magnetic resonance-based metabolomic signature of advanced metastatic human breast cancer. Cancer Lett 343(1):33–41. doi:10.1016/j.canlet.2013.09.011

    Article  CAS  PubMed  Google Scholar 

  52. Lai H-S, Lee J-C, Lee P-H et al (2005) Plasma free amino acid profile in cancer patients. Semin Cancer Biol 15:267–276

    Article  CAS  PubMed  Google Scholar 

  53. Miyagi Y, Higashiyama M, Gochi A et al (2011) Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS One 6(9):e24143. doi:10.1371/journal.pone.0024143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tenori L, Oakman C, Claudino WM et al (2012) Exploration of serum metabolomic profiles and outcomes in women with metastatic breast cancer: a pilot study. Mol Oncol 6(4):437–444. doi:10.1016/j.molonc.2012.05.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Di Leo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Breast Cancer Research Foundation

About this chapter

Cite this chapter

Hart, C., Tenori, L., Luchinat, C., Di Leo, A. (2016). Metabolomics in Breast Cancer: Current Status and Perspectives. In: Stearns, V. (eds) Novel Biomarkers in the Continuum of Breast Cancer. Advances in Experimental Medicine and Biology(), vol 882. Springer, Cham. https://doi.org/10.1007/978-3-319-22909-6_9

Download citation

Publish with us

Policies and ethics