Skip to main content

Modeling of Discrete-Time Fractional-Order State Space Systems Using the Balanced Truncation Method

  • Chapter
  • First Online:
Theoretical Developments and Applications of Non-Integer Order Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 357))

Abstract

This paper presents a new method of approximation of linear time-invariant (LTI) discrete-time fractional-order state space systems by means of the Balanced Truncation Method. This reduction method is applied to the rational form of fractional-order system in terms of expanded state equation. As an approximation result we obtain rational and relatively low-order state space system. Simulation experiments show very high accuracy of the introduced methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoulas, A.: Approximation of large-scale dynamical system. Society for Industrial and Applied Mathematics, Philadelphia (2005)

    Book  Google Scholar 

  2. Bania, P., Baranowski, J.: Laguerre polynomial approximation of fractional order linear systems. In: Advances in the Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering. vol. 257, pp. 171–182. Springer, Dordrecht, Netherlands (2013)

    Google Scholar 

  3. Barbosa, R., Machado, J.: Implementation of discrete-time fractional-order controllers based on LS approximations. Acta Polytech. Hung. 3(4), 5–22 (2006)

    Google Scholar 

  4. Chen, Y., Vinagre, B., Podlubny, I.: A new discretization method for fractional order differentiators via continued fraction expansion. In: Proceedings of DETC’2003, ASME Design Engineering Technical Conferences, Vol. 340, pp. 349–362. Chicago, IL (2003)

    Google Scholar 

  5. Gao, Z.: Improved oustaloup approximation of fractional-order operators using adaptive chaotic particle swarm optimization. J. Syst. Eng. Electron. 23(1), 145–153 (2012)

    Article  Google Scholar 

  6. Jiang, C.X., Carletta, J.E., Hartley, T.T.: Implementation of fractional-order operators on field programmable gate arrays. In: Sabatier, J. (ed.) Advances in fractional calculus: theoretical developments and applications in physics and engineering, pp. 333–346. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  7. Kootsookos, O.J., Williamson, R.C.: FIR approximation of fractional sample delay systems. IEEE Trans. Circ. Syst. II 43(3), 269–271 (1996)

    Article  Google Scholar 

  8. Latawiec, K.J., Stanisławski, R., Gałek, M., Łukaniszyn, M.: Modeling and identification of a fractional-order discrete-time SISO Laguerre-Wiener system. In: Proceedings of the 19th International Conference on Methods and Models in Automation and Robotics, pp. 165–168. Miedzyzdroje, Poland (2014)

    Google Scholar 

  9. Maione, G.: A digital, noninteger order differentiator using Laguerre orthogonal sequences. Int. J. Intell. Control Syst. 11(2), 77–81 (2006)

    Google Scholar 

  10. Moore, B.: Principal component analysis in linear systems: Controllability, observability and model reduction. IEEE Trans. Autom. Control AC-26(1), 17–32 (1981)

    Google Scholar 

  11. Obinata, G., Anderson, B.: Model reduction for control system design. Springer, London (2001)

    Book  MATH  Google Scholar 

  12. Poinot, T., Trigeassou, J.C.: Identification of fractional systems using an output-error technique. Nonlinear Dyn. 38(1), 133–154 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rachid, M., Maamar, B., Said, D.: Comparison between two approximation methods of state space fractional systems. Signal Process. 91(3), 461–469 (2011)

    Article  MATH  Google Scholar 

  14. Rydel, M., Stanisławski, W.: Selection of reduction parameters of rational krylov methods for complex mimo lti models using evolutionary algorithm. In: 19th International Conference on Methods and Models in Automation and Robotics, pp. 720–725 (2014)

    Google Scholar 

  15. Stanisławski, R.: New Laguerre filter approximators to the Grünwald-Letnikov fractional difference. Math. Probl. Eng. 2012, Article ID: 732917, (2012)

    Google Scholar 

  16. Stanisławski, R., Gałek, M., Latawiec, K.J., Łukaniszyn, M.: Modeling and identification of a fractional-order discrete-time Laguerre-Hammerstein system. In: Progress in Systems Engineering-Proceedings of Twenty Third International Conference on Systems Engineering, Advances in Intelligent Systems and Computing Series. Springer, Dordrecht, Netherlands (2014)

    Google Scholar 

  17. Stanisławski, R., Latawiec, K.J.: Normalized finite fractional differences—the computational and accuracy breakthroughs. Int. J. Appl. Math. Comput. Sci. 22(4), 907–919 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Stanisławski, R., Latawiec, K.J., Gałek, M., Łukaniszyn, M.: Modeling and identification of fractional-order discrete-time Laguerre-based feedback-nonlinear systems. In Latawiec, K. et al. (ed.) Advances in Modelling and Control of Non-integer Order Systems, Lecture Notes in Electrical Engineering, pp. 101–112. Springer, Dordrecht, Netherlands (2014)

    Google Scholar 

  19. Stanisławski, R., Latawiec, K.J., Łukaniszyn, M.: A comparative analysis of Laguerre-based approximators to the Grünwald-Letnikov fractional-order difference. Math. Probl. Eng. 2015, 1–10, Article ID: 512104 (2015)

    Google Scholar 

  20. Stanisławski, W., Rydel, M.: Hierarchical models of complex plants on basis of power boiler example. Arch. Control Sci. 20(LVI)(4), 381–416 (2010)

    Google Scholar 

  21. Tseng, C., Pei, S., Hsia, S.: Computation of fractional derivatives using Fourier transform and digital FIR diferentiator. Signal Process. 80(1), 151–159 (2000)

    Article  MATH  Google Scholar 

  22. Varga, A.: Efficient minimal realization procedure based on balancing. In: IMACS/IFAC Symposium on Modeling and Control of Technological Systems, vol. 2, pp. 42–47 (1991)

    Google Scholar 

  23. Vinagre, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calculus Appl. Anal. 3(3), 945–950 (2000)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Stanisławski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rydel, M., Stanisławski, R., Bialic, G., Latawiec, K.J. (2016). Modeling of Discrete-Time Fractional-Order State Space Systems Using the Balanced Truncation Method. In: Domek, S., Dworak, P. (eds) Theoretical Developments and Applications of Non-Integer Order Systems. Lecture Notes in Electrical Engineering, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-319-23039-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23039-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23038-2

  • Online ISBN: 978-3-319-23039-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics