Skip to main content

Research Needs

  • Chapter
  • First Online:
Book cover Aviation Turbulence

Abstract

The current state of our understanding of aviation-scale turbulence processes and overviews of current detection and forecasting methods were provided in previous chapters of this book. Future progress will require a multipronged multidisciplinary approach from the academic, engineering, and user communities underpinned by advances in our fundamental understanding of turbulence process. The chapter outlines the required research and development, as well as operational needs, required to better understand, observe, and predict turbulence regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelfang, S.I.: On the relations between wind shears over various altitude intervals. J. Appl. Meteorol. 10(2), 156–159 (1971)

    Article  Google Scholar 

  • Ahijevych, D., Gilleland, E., Brown, B.G., Ebert, E.E.: Application of spatial verification methods to idealized and NWP-gridded precipitation forecasts. Weather Forecasting 24, 1485–1497 (2009). doi:10.1175/2009WAF2222298.1

    Article  Google Scholar 

  • Alarcón, J.F.A., Nieto, F.J.S., Carretero, J.G.-H.: Aircraft used as a sensor for atmospheric behaviour determination. Practical case: pressure estimation using automatic dependent surveillance-broadcast. Proc. Inst. Mech. Eng. G: J. Aerospace Eng. 227(5), 778–797 (2013). doi:10.1177/0954410012442044

    Article  Google Scholar 

  • Ambs, K.: The influence of cockpit weather automation on pilot perception and decision-making in severe weather conditions. McNair Scholars Res. J. 7(1), (2014). http://commons.emich.edu/mcnair/vol7/iss1/4

  • Balsley, B.B., Lawrence, D.A., Woodman, R.F., Fritts, D.C.: Fine-Scale characteristics of temperature, wind, and turbulence in the lower atmosphere (0–1,300 m) over the South Peruvian Coast. Boundary-Layer Meteorol. 147, 165–178 (2013)

    Article  Google Scholar 

  • Bauer, P., Thorpe, A., Brunet, G.: The quiet revolution of numerical weather prediction. Nature. 525, 47–55 (2015). doi:10.1038/nature14956

    Article  Google Scholar 

  • Birner, T.: Fine-scale structure of the extratropical tropopause region. J. Geophys. Res. 111(D4), D04104 (2006). doi:10.1029/2005JD006301

    Article  Google Scholar 

  • Clark, T.L., Hall, W.D., Kerr, R.M., Middleton, D., Radke, L., Ralph, F.M., Nieman, P.J., Levinson, D.: Origins of aircraft-damaging clear air turbulence during the 9 December 1992 Colorado downslope windstorm: numerical simulations and comparison to observations. J. Atmos. Sci. 57(8), 1105–1131 (2000)

    Article  Google Scholar 

  • Clayson, C.A., Kantha, L.: On turbulence and mixing in the free atmosphere inferred from high-resolution soundings. J. Atmos. Oceanic Technol. 25(6), 833–852 (2008)

    Article  Google Scholar 

  • Crawford, T.L., Dobosy, R.J., Dumas, E.J.: Aircraft wind measurement considering lift-induced upwash. Boundary-Layer Meteorol. 80, 79–94 (1996)

    Article  Google Scholar 

  • Dehghan, A., Hocking, W.R., Srinivasan, R.: Comparisons between multiple in-situ aircraft measurements and radar in the troposphere. J. Atmos. Sol. Terr. Phys. 118, 64–77 (2014)

    Article  Google Scholar 

  • Dietachmayer, G.S., Droegemeier, K.K.: Application of continuous dynamic grid adaptation techniques to meteorological modeling. Part I. Mon. Weather Rev. 120, 1675–1706 (1992)

    Article  Google Scholar 

  • Elston, J., Argrow, B., Stachura, M., Weibel, D., Lawrence, D., Pope, D.: Overview of small fixed-wing unmanned aircraft for meteorological sampling. J. Atmos. Oceanic Technol. 32, 97–115 (2015). doi:10.1175/JTECH-D-13-00236.1

    Article  Google Scholar 

  • Emanuel, M., Sherry, J., Catapano, S., Cornman, L., Robinson, P.: In situ performance standard for eddy dissipation rate. 16th Conference of Aviation, Range and Aerospace Meteorology, Austin, TX. Paper 11.3 (2013)

    Google Scholar 

  • Fritts, D.C., Wang, L., Werne, J., Lund, T., Wan, K.: Gravity wave instability dynamics at high Reynolds numbers. Part I: Wave field evolution at large amplitudes and high frequencies. J. Atmos. Sci. 66, 1126–1148 (2009)

    Article  Google Scholar 

  • Gerz, T., Forster, C., Tafferner, A.: Mitigating the impact of adverse weather on aviation. In: Schumann, U. (ed.) Atmospheric Physics, Research Topics in Aerospace, pp. 645–659. Springer, Berlin (2012). doi:10.1007/978-3-642-30183-4_39

    Chapter  Google Scholar 

  • Gill, P.G., Buchanan, P.: An ensemble based turbulence forecast system. Meteorol. Appl. 21, 12–19 (2014). doi:10.1002/met.1373

    Article  Google Scholar 

  • Groves, P.D.: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. ARTECH House, Boston, MA, 518 pp. (2008)

    Google Scholar 

  • Grubišić, V., Doyle, J.D., Kuettner, J., Mobbs, S., Smith, R.B., Whiteman, C.D., Dirks, R., Czyzyk, S., Cohn, S.A., Vosper, S., Weissman, M., Haimov, S., De Wekker, S., Pan, L., Chow, F.K.: The Terrain-Induced Rotor Experiment: an overview of the field campaign and some highlights of special observations. Bull. Am. Meteorol. Soc. 89, 1513–1533 (2008)

    Article  Google Scholar 

  • Harrison, R.G., Hogan, R.J.: In situ atmospheric turbulence measurement using the terrestrial magnetic field—a compass for a radiosonde. J. Atmos. Oceanic Technol. 23, 517–523 (2006)

    Article  Google Scholar 

  • Honomichl, S.B., Detwiler, A.G., Smith, P.L.: Observed hazards to aircraft in deep summertime convective clouds from 4-7 km. J. Aircraft 50(3), 926–935 (2013). doi:10.2514/1.C032057

    Article  Google Scholar 

  • Houchi, K., Stoffelen, A., Marseille, G.J., De Kloe, J.: Comparison of wind and wind shear climatologies derived from high-resolution radiosondes and the ECMWF model. J. Geophys. Res. 115, D22123 (2010). doi:10.1029/2009JD013196

    Article  Google Scholar 

  • Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  • Kauffmann, P.: The business case for turbulence sensing systems in the US air transport sector. J. Air Transport Manage. 8, 99–107 (2002)

    Article  Google Scholar 

  • Koch, S.E., Jamison, B.D., Lu, C., Smith, T.L., Tollerud, E.L., Girz, C., Wang, N., Lane, T.P., Shapiro, M.A., Parrish, D.D., Cooper, O.R.: Turbulence and gravity waves within an upper-level front. J. Atmos. Sci. 62(11), 3885–3908 (2005)

    Article  Google Scholar 

  • Kopeć, J.M., Kwiatkowski, K., de Haan, S., Malinowski, S.P.: Retrieving clear-air turbulence information from regular commercial aircraft using Mode-S and ADS-B broadcast. Atmos. Meas. Tech. Discuss. 8, 11817–11852 (2015). doi:10.5194/amtd-8-11817-2015

    Article  Google Scholar 

  • Lane, T.P., Sharman, R.D.: Intensity of thunderstorm-generated turbulence revealed by large-eddy simulation. Geophys. Res. Lett. 41, 2221–2227 (2014). doi:10.1002/2014GL059299

    Article  Google Scholar 

  • Lane, T.P., Sharman, R.D., Trier, S.B., Fovell, R.G., Williams, J.K.: Recent advances in the understanding of near-cloud turbulence. Bull. Am. Meteorol. Soc. 93(4), 499–515 (2012). doi:10.1175/BAMS-D-11-00062.1

    Article  Google Scholar 

  • Lawrence, D.A., Balsley, B.B.: High-resolution atmospheric sensing of multiple atmospheric variables using the DataHawk small airborne measurement system. J. Atmos. Oceanic Technol. 30, 2352–2366 (2013). doi:10.1175/JTECH-D-12-00089.1

    Article  Google Scholar 

  • Lilly, D.K., Zipser, E.J.: The Front Range windstorm of 11 January 1972: a meteorological narrative. Weatherwise 25, 56–63 (1972)

    Article  Google Scholar 

  • Lorenz, E.N.: The predictability of a flow which possesses many scales of motion. Tellus 21, 289–307 (1969)

    Article  MathSciNet  Google Scholar 

  • Loving, N.V.: Technical and meteorological planning to meet the ALLCAT program objectives. In: Pao, Y.-H., Goldburg, A. (eds.) Clear Air Turbulence and Its Detection, pp. 127–143. Plenum Press, New York, NY (1969)

    Chapter  Google Scholar 

  • Marlton, G.J., Harrison, R.G., Nicoll, K.A., Williams, P.D.: A balloon-borne accelerometer technique for measuring atmospheric turbulence. Rev. Sci. Instrum. 86, 016109 (2015). doi:10.1063/1.4905529

    Article  Google Scholar 

  • McHugh, J., Sharman, R.: Generation of mountain wave-induced mean flows and turbulence near the tropopause. Q. J. Roy. Meteorol. Soc. 139, 1632–1642 (2013). doi:10.1002/qj.2035

    Article  Google Scholar 

  • McIntyre, M.E., Palmer, T.N.: Breaking planetary waves in the stratosphere. Nature 305, 593–600 (1983)

    Article  Google Scholar 

  • Mellor, G.L., Yamada, T.: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31, 1791–1806 (1974)

    Article  Google Scholar 

  • Mirza, A., Pagé, C., Geindre, S.: FLYSAFE – an approach to flight safety – using GML/XML objects to define hazardous volumes space for aviation. 13th Conference on Aviation, Range and Aerospace Meteorology, American Meteorological Society, New Orleans, USA (2008)

  • National Research Council, Board on Atmospheric Sciences and Climate: From Research to Operations in Weather Satellites and Numerical Weather Prediction: Crossing the Valley of Death. National Academic Press, Washington, DC (2000)

    Google Scholar 

  • Ozmidov, R.V.: On the turbulent exchange in a stably stratified ocean. Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 1, 853–860 (1965)

    Google Scholar 

  • Paoli, R., Thouron, O., Escobar, J., Picot, J., Cariolle, D.: High-resolution large-eddy simulations of stably stratified flows: application to subkilometer-scale turbulence in the upper troposphere–lower stratosphere. Atmos. Chem. Phys. 14, 5037–5055 (2014)

    Article  Google Scholar 

  • Regan, C.D., Jutte, C.V.: Survey of applications of active control technology for gust alleviation and new challenges for lighter-weight aircraft. NASA TM-2012-216008 (2012)

    Google Scholar 

  • Reiter, E.R., Lester, P.F.: Richardson’s Number in the free atmosphere. Arch. Met. Geoph. Biokl. A 17, 1–7 (1968)

    Article  Google Scholar 

  • Schalkwijk, J., Jonker, H.J.J., Siebesma, A.P., Van Meijgaard, E.: Weather forecasting using GPU-based large-eddy simulations. Bull. Am. Meteorol. Soc. 96, 715–723 (2015). doi:10.1175/BAMS-D-14-00114.1

    Article  Google Scholar 

  • Schumann, U., Gerz, T.: Turbulent mixing in stably stratified shear flows. J. Appl. Meteorol. 34(1), 33–48 (1995)

    Article  Google Scholar 

  • Schwartz, B.: The quantitative use of PIREPs in developing aviation weather guidance products. Weather Forecasting 11, 372–384 (1996)

    Article  Google Scholar 

  • Sharman, R., Tebaldi, C., Wiener, G., Wolff, J.: An integrated approach to mid- and upper-level turbulence forecasting. Weather Forecasting 21(3), 268–287 (2006). doi:10.1175/WAF924.1

    Article  Google Scholar 

  • Sharman, R.D., Cornman, L.B., Meymaris, G., Pearson, J., Farrar, T.: Description and derived climatologies of automated in situ eddy dissipation rate reports of atmospheric turbulence. J. Appl. Meteorol. Climatol. 53(6), 1416–1432 (2014). doi:10.1175/JAMC-D-13-0329.1

    Article  Google Scholar 

  • Sordeide, D., Bogue, R.K., Ehernberger, L.J., Bagley, H.: Coherent lidar turbulence measurement for gust load alleviation. NASA TM 104318 (1996)

    Google Scholar 

  • Steiner, M., Bateman, R., Megenhardt, D., Liu, Y., Pocernich, M., Krozel, J.: Translation of ensemble weather forecasts into probabilistic air traffic capacity impact. Air Traffic Control Quart. 18(3), 229–254 (2010)

    Google Scholar 

  • Warner, T.T.: Numerical Weather and Climate Prediction. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  • Werne, J., Fritts, D., Wang, L., Lund, T., Wan, K.: Atmospheric turbulence forecasts for Air Force and missile defense applications. 20th DoD HPC User Group Conference, Schaumburg, IL, 14–17 June (2010). doi:10.1109/HPCMP-UGC.2010.75

  • Williams, J.K.: Using random forests to diagnose aviation turbulence. Mach. Learn. 95, 51–70 (2014). doi:10.1007/s10994-013-5346-7

    Article  MathSciNet  Google Scholar 

  • Wolff, J.K., Sharman, R.D.: Climatology of upper-level turbulence over the continental Unites States. J. Appl. Meteorol. Climatol. 47, 2198–2214 (2008). doi:10.1175/2008JAMC1799.1

    Article  Google Scholar 

  • Wyngaard, J.C.: Toward numerical modeling in the “terra incognita”. J. Atmos. Sci. 61(14), 1816–1826 (2004). doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2

    Article  Google Scholar 

  • Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., Esau, I.: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows. Boundary-Layer Meteorol. 146, 341–373 (2013). doi:10.1007/s10546-012-9768-8

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the reviews and suggestions supplied by John Knox, Paul Williams, Wiebke Deierling, Stan Trier, and Jim Doyle. Todd Lane is supported by the Australian Research Council's Centres of Excellence Scheme (CE110001028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Sharman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharman, R., Lane, T., Schumann, U. (2016). Research Needs. In: Sharman, R., Lane, T. (eds) Aviation Turbulence. Springer, Cham. https://doi.org/10.1007/978-3-319-23630-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23630-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23629-2

  • Online ISBN: 978-3-319-23630-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics