Skip to main content

Virtual Planning of Needle Guidance for a Parallel Robot Used in Brachytherapy

  • Conference paper
  • First Online:
New Trends in Medical and Service Robots

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 38))

Abstract

Brachytherapy (BT) is an innovative cancer treatment option that allows the delivery of high doses of radiation to specific areas of the body. BT has an important advantage: it doesn’t irradiate unnecessarily healthy tissue, but focalizes mainly on the destruction of tumorous cells. The paper presents an innovative parallel robot designed for BT and a needle trajectory planning software. The algorithm designed for virtual planning of robotic needle insertion allows automatic or manual definition of the needles trajectory. A virtual reality environment has been modelled and simulations using a real needle trajectory have been conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassan H et al (2007) A novel manipulator for 3D ultrasound guided percutaneous needle insertion. In: Robotics and automation conference, pp 617–622

    Google Scholar 

  2. Baumann M et al (2011) Prosper: image and robot-guided prostate brachytherapy. Aquat Bot 32(2):63–65

    Google Scholar 

  3. Bernardes MC, Adorno BV, Poignet P, Borges GA (2013) Robot-assisted automatic insertion of steerable needles with closed-loop imaging feedback and intraoperative trajectory replanning. Mechatronics 23:630–645

    Article  Google Scholar 

  4. Elgezua I, Kobayashi Y, Makatsu G, Fujie MG (2013) Survey on current state-of-the-art in needle insertion robots: open challenges for application in real surgery. Proc CIRP 5:94–99

    Google Scholar 

  5. Fichtinger G et al (2006) Robotically assisted prostate brachytherapy with transrectal ultrasound guidance. Phantom Exp Brachytherapy 5(1):14–26

    Article  Google Scholar 

  6. Gerbaulet A, Pötter R, Mazeron J-J, Meertens H, Limbergen EV (2002) The GEC ESTRO handbook of brachytherapy. Eur Soc Therap Radiol Oncol. ISBN 978-90-804532-6-5

    Google Scholar 

  7. Goksel O, Sapchuk K, Salcudean SE (2011) Haptic simulator for prostate brachytherapy with simulated needle and probe interaction. Proc IEEE Conf Trans Haptics 4(3):188–198

    Article  Google Scholar 

  8. Hao S, Iordachita II, Xiaoan Y, Cole GA, Fischer GS (2011) Reconfigurable MRI-guided robotic surgical manipulator: prostate brachytherapy and neurosurgery applications. Int Conf Med. Biol. Soc. pp 2111–2114

    Google Scholar 

  9. Hing JT, Brooks AD, Desai JP (2006) Reality-based needle insertion simulation for haptic feedback in prostate brachytherapy. Proc Int Conf Robot. Autom. 619–624

    Google Scholar 

  10. Jiang Y, Sankereacha R, Pignol J (2007) Software tool for breast cancer brachytherapy planning using VTK. In: Proceedings of 6th IEEE international conference on cognitive informatics, pp 381–384

    Google Scholar 

  11. Mateescu D (2010) Oncology patient guide-published in Romanian. Bennet Publishing House, Bucuresti. ISBN 978-973-87129-7-3

    Google Scholar 

  12. Pisla D et al (2014) Innovative approaches regarding robots for brachytherapy. New Trends Med Serv Robot Mech Mach Sci 20:63–78

    Article  Google Scholar 

  13. Plitea N et al (2013) Parallel robot for brachytherapy with two kinematic guiding chains of the platform (the needle) type CYL-U. Patent pending, A/10006/2013

    Google Scholar 

  14. Plitea N et al (2014) Structural analysis and synthesis of parallel robots for brachytherapy. New Trends Med Serv Robot 16:191–204. http://link.springer.com/chapter/10.1007%2F978-3-319-01592-7_17

  15. Podder T, Buzurovic I, Huang K, Yu Y (2010) MIRAB: an image-guided multichannel robot for prostate brachytherapy. Int J Radiat Oncol Biol Phys 78(3):S810

    Article  Google Scholar 

  16. Polo A, Salembier C, Venselaar J, Hoskin P (2010) Review of intraoperative imaging and planning techniques in permanent seed prostate brachytherapy. Radiother Oncol 94:12–23

    Article  Google Scholar 

  17. Salcudean SE, Prananta TD, Morris WJ, Spadinger I (2008) A robotic needle guide for prostate brachytherapy. Robot Autom 2975–2981

    Google Scholar 

  18. Schmidt-Ullrich PN, Todor DA, Cuttino LW, Arthur DW (2004) Virtual planning of multicatheter brachytherapy implants for accelerated partial breast irradiation. In: Proceedings of 26th international conference of engineering in medicine and biology society, vol 2, pp 3124–3127

    Google Scholar 

  19. Siemens NX, RecurDYN solver (2014). http://www.plm.automation.siemens.com/en_us/

  20. Song DY et al (2011) Robotic needle guide for prostate brachytherapy. Clin Test Feasibility Perform Brachytherapy 10:57–63

    Google Scholar 

  21. Sparchez Z, Radu P, Zaharia T, Kacso G, Grigorescu I, Badea R (2010) Contrast enhanced ultrasound guidance: a new tool to improve accuracy in percutaneous biopsies. Med Ultrason 12(2):133–141

    Google Scholar 

  22. Strassmann G et al (2011) Advantage of robotic needle placement on a prostate model in HDR brachytherapy. Strahlenther Onkol 187(6):367–372

    Article  Google Scholar 

  23. Trejos AL et al (2008) MIRA V: an integrated system for minimally invasive robot-assisted lung brachytherapy, In: International conferecne on robotics and automation, pp 2982–2987

    Google Scholar 

Download references

Acknowledgments

This paper was supported by the Post-Doctoral Programme POSDRU/159/1.5/S/137516, project co-funded from European Social Fund through the Human Resources Sectorial Operational Program 2007-2013, by the project no. 173/2012, code PN-II-PT-PCCA-2011-3.2-0414, entitled “Robotic assisted brachytherapy, an innovative approach of inoperable cancers—CHANCE” financed by UEFISCDI, and by the Scopes International Grant IZ74Z0_137361/1 entitled “Creative Alliance in Research and Education focused on Medical and Service Robotics CARE-Robotics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Pisla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gherman, B. et al. (2016). Virtual Planning of Needle Guidance for a Parallel Robot Used in Brachytherapy. In: Bleuler, H., Bouri, M., Mondada, F., Pisla, D., Rodic, A., Helmer, P. (eds) New Trends in Medical and Service Robots. Mechanisms and Machine Science, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-23832-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23832-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23831-9

  • Online ISBN: 978-3-319-23832-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics