Skip to main content

Bayesian Optimization for Materials Design

  • Chapter
  • First Online:
Information Science for Materials Discovery and Design

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 225))

Abstract

We introduce Bayesian optimization , a technique developed for optimizing time-consuming engineering simulations and for fitting machine learning models on large datasets. Bayesian optimization guides the choice of experiments during materials design and discovery to find good material designs in as few experiments as possible. We focus on the case when materials designs are parameterized by a low-dimensional vector. Bayesian optimization is built on a statistical technique called Gaussian process regression , which allows predicting the performance of a new design based on previously tested designs. After providing a detailed introduction to Gaussian process regression, we describe two Bayesian optimization methods: expected improvement, for design problems with noise-free evaluations; and the knowledge-gradient method, which generalizes expected improvement and may be used in design problems with noisy evaluations. Both methods are derived using a value-of-information analysis, and enjoy one-step Bayes-optimality .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Being “mean-square differentiable” at x in the direction given by the unit vector \(e_i\) means that the limit \(\lim _{\delta \rightarrow 0} (f(x+\delta e_i) - f(x))/\delta \) exists in mean square. Being “k-times mean-square differentiable” is defined analogously.

References

  1. H.J. Kushner, A new method of locating the maximum of an arbitrary multi- peak curve in the presence of noise. J. Basic Eng. 86, 97–106 (1964)

    Article  Google Scholar 

  2. J. Mockus, Bayesian Approach to Global Optimization: Theory and Applications (Kluwer Academic, Dordrecht, 1989)

    Book  Google Scholar 

  3. J. Mockus, V. Tiesis, A. Zilinskas, The application of Bayesian methods for seeking the extremum, in Towards Global Optimisation, ed. by L.C.W. Dixon, G.P. Szego, vol. 2 (Elsevier Science Ltd., North Holland, Amsterdam, 1978), pp. 117–129

    Google Scholar 

  4. D.R. Jones, M. Schonlau, W.J. Welch, Efficient Global Optimization of Expensive Black-Box Functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  Google Scholar 

  5. A. Booker, J. Dennis, P. Frank, D. Serafini, V. Torczon, M.W. Trosset, Optimization using surrogate objectives on a helicopter test example. Prog. Syst. Control Theor. 24, 49–58 (1998)

    Google Scholar 

  6. J. Snoek, H. Larochelle, R.P. Adams, Practical bayesian optimization of machine learning algorithms. in Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

    Google Scholar 

  7. E. Brochu, M. Cora, N. de Freitas, A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical Report TR-2009-023, Department of Computer Science, University of British Columbia, November 2009

    Google Scholar 

  8. A. Forrester, A. Sobester, A. Keane, Engineering Design Via Surrogate Modelling: A Practical Guide (Wiley, West Sussex, UK, 2008)

    Book  Google Scholar 

  9. T.J. Santner, B.W. Willians, W. Notz, The Design and Analysis of Computer Experiments (Springer, New York, 2003)

    Book  Google Scholar 

  10. M.J. Sasena, Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations. Ph.D. thesis, University of Michigan (2002)

    Google Scholar 

  11. D.G. Kbiob, A statistical approach to some basic mine valuation problems on the witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. (1951)

    Google Scholar 

  12. G. Matheron, The theory of regionalized variables and its applications, vol 5. École national supérieure des mines (1971)

    Google Scholar 

  13. N. Cressie, The origins of kriging. Math. Geol. 22(3), 239–252 (1990)

    Google Scholar 

  14. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (MIT Press, Cambridge, MA, 2006)

    Google Scholar 

  15. C.E. Rasmussen (2011), http://www.gaussianprocess.org/code, Accessed 15 July 2015

  16. A.B. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis (CRC Press, Boca Raton, FL, second edition, 2004)

    Google Scholar 

  17. J.O. Berger, Statistical decision theory and Bayesian analysis (Springer-Verlag, New York, second edition) (1985)

    Google Scholar 

  18. B. Ankenman, B.L. Nelson, J. Staum, Stochastic kriging for simulation metamodeling. Oper. Res. 58(2), 371–382 (2010)

    Article  Google Scholar 

  19. P.W. Goldberg, C.K.I. Williams, C.M. Bishop, Regression with input-dependent noise: a gaussian process treatment. Advances in neural information processing systems, p. 493–499 (1998)

    Google Scholar 

  20. K. Kersting, C. Plagemann, P. Pfaff, W. Burgard, Most likely heteroscedastic Gaussian process regression. In Proceedings of the 24th international conference on Machine learning, ACM, pp. 393–400 (2007)

    Google Scholar 

  21. C. Wang, Gaussian Process Regression with Heteroscedastic Residuals and Fast MCMC Methods. Ph.D. thesis, University of Toronto (2014)

    Google Scholar 

  22. P.I. Frazier, J. Xie, S.E. Chick, Value of information methods for pairwise sampling with correlations, in Proceedings of the 2011 Winter Simulation Conference, ed. by S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, M. Fu (Institute of Electrical and Electronics Engineers Inc, Piscataway, New Jersey, 2011), pp. 3979–3991

    Google Scholar 

  23. S. Sankaran, A.L. Marsden, The impact of uncertainty on shape optimization of idealized bypass graft models in unsteady flow. Physics of Fluids (1994-present), 22(12):121–902 (2010)

    Google Scholar 

  24. P.I. Frazier, W.B. Powell, S. Dayanik, The knowledge gradient policy for correlated normal beliefs. INFORMS J. Comput. 21(4), 599–613 (2009)

    Article  Google Scholar 

  25. W. Scott, P.I. Frazier, W.B. Powell, The correlated knowledge gradient for simulation optimization of continuous parameters using gaussian process regression. SIAM J. Optim. 21(3), 996–1026 (2011)

    Article  Google Scholar 

  26. L.P. Kaelbling, Learning in Embedded Systems (MIT Press, Cambridge, MA, 1993)

    Google Scholar 

  27. R.S. Sutton, A.G. Barto, Reinforcement Learning (The MIT Press, Cambridge, Massachusetts, 1998)

    Google Scholar 

  28. J. Gittins, K. Glazebrook, R. Weber. Multi-armed Bandit Allocation Indices. Wiley, 2nd edition (2011)

    Google Scholar 

  29. A. Mahajan, D. Teneketzis, Multi-armed bandit problems. In D. Cochran A. O. Hero III, D. A. Castanon, K. Kastella, (Ed.). Foundations and Applications of Sensor Management. Springer-Verlag (2007)

    Google Scholar 

  30. D. Huang, T.T. Allen, W.I. Notz, N. Zeng, Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models. J. Global Optim. 34(3), 441–466 (2006)

    Article  Google Scholar 

  31. O. Roustant, D. Ginsbourger, Y. Deville, Dicekriging, diceoptim: two R packages for the analysis of computer experiments by kriging-based metamodelling and optimization. J. Stat. Softw. 51(1), p. 54 (2012)

    Google Scholar 

  32. P.I. Frazier, Learning with Dynamic Programming. John Wiley and Sons (2011)

    Google Scholar 

  33. D. Ginsbourger, R. Riche, Towards gaussian process-based optimization with finite time horizon. mODa 9–Advances in Model-Oriented Design and Analysis, p. 89–96 (2010)

    Google Scholar 

  34. R. Waeber, P.I. Frazier, S.G. Henderson, Bisection search with noisy responses. SIAM J. Control Optim. 51(3), 2261–2279 (2013)

    Article  Google Scholar 

  35. J. Xie, P.I. Frazier, Sequential bayes-optimal policies for multiple comparisons with a known standard. Oper. Res. 61(5), 1174–1189 (2013)

    Article  Google Scholar 

  36. P.I. Frazier, Tutorial: Optimization via simulation with bayesian statistics and dynamic programming, in Proceedings of the 2012 Winter Simulation Conference Proceedings, ed. by C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, A.M. Uhrmacher (Institute of Electrical and Electronics Engineers Inc., Piscataway, New Jersey, 2012), pp. 79–94

    Google Scholar 

  37. R.A. Howard, Information Value Theory. Syst. Sci. Cybern. IEEE Trans. 2(1), 22–26 (1966)

    Article  Google Scholar 

  38. C.D. Perttunen, A computational geometric approach to feasible region division inconstrained global optimization. in Proceedings of 1991 IEEE International Conference on Systems, Man, and Cybernetics, 1991.’Decision Aiding for Complex Systems, pp. 585–590 (1991)

    Google Scholar 

  39. B.E. Stuckman, A global search method for optimizing nonlinear systems. Syst. Man Cybern. IEEE Trans. 18(6), 965–977 (1988)

    Article  Google Scholar 

  40. J. Villemonteix, E. Vazquez, E. Walter, An informational approach to the global optimization of expensive-to-evaluate functions. J. Global Optim. 44(4), 509–534 (2009)

    Article  Google Scholar 

  41. D.C.T. Bautista, A Sequential Design for Approximating the Pareto Front using the Expected Pareto Improvement Function. Ph.D. thesis, The Ohio State University (2009)

    Google Scholar 

  42. P.I. Frazier, A.M. Kazachkov, Guessing preferences: a new approach to multi-attribute ranking and selection, in Proceedings of the 2011 Winter Simulation Conference, ed. by S. Jain, R.R. Creasey, J. Himmelspach, K.P. White, M. Fu (Institute of Electrical and Electronics Engineers Inc, Piscataway, New Jersey, 2011), pp. 4324–4336

    Google Scholar 

  43. J. Knowles, ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. Evol. Comput. IEEE Trans. 10(1), 50–66 (2006)

    Article  Google Scholar 

  44. S.C. Clark, J. Wang, E. Liu, P.I. Frazier, Parallel global optimization using an improved multi-points expected improvement criterion (working paper, 2014)

    Google Scholar 

  45. D. Ginsbourger, R. Le Riche, L. Carraro, A multi-points criterion for deterministic parallel global optimization based on kriging. In International Conference on Nonconvex Programming, NCP07, Rouen, France, December 2007

    Google Scholar 

  46. D. Ginsbourger, R. Le Riche, and L. Carraro, Kriging is well-suited to parallelize optimization. In Computational Intelligence in Expensive Optimization Problems, Springer, vol. 2, p. 131–162 (2010)

    Google Scholar 

  47. A.I.J. Forrester, A. Sóbester, A.J. Keane, Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. A: Math. Phys. Eng. Sci. 463(2088), 3251–3269 (2007)

    Article  Google Scholar 

  48. P.I. Frazier, W.B. Powell, H.P. Simão, Simulation model calibration with correlated knowledge-gradients, in Proceedings of the 2009 Winter Simulation Conference Proceedings, ed. by M.D. Rossetti, R.R. Hill, B. Johansson, A. Dunkin, R.G. Ingalls (Institute of Electrical and Electronics Engineers Inc, Piscataway, New Jersey, 2009), pp. 339–351

    Chapter  Google Scholar 

  49. D. Huang, T.T. Allen, W.I. Notz, R.A. Miller, Sequential kriging optimization using multiple-fidelity evaluations. Struct. Multi. Optim. 32(5), 369–382 (2006)

    Article  Google Scholar 

  50. J. Bect, D. Ginsbourger, L. Li, V. Picheny, E. Vazquez, Sequential design of computer experiments for the estimation of a probability of failure. Stat. Comput. 22(3), 773–793 (2012)

    Article  Google Scholar 

  51. J.R. Gardner, M.J. Kusner, Z. Xu, K. Weinberger, J.P. Cunningham, Bayesian optimization with inequality constraints. In Proceedings of The 31st International Conference on Machine Learning, pp. 937–945 (2014)

    Google Scholar 

  52. D.M. Negoescu, P.I. Frazier, W.B. Powell, The knowledge gradient algorithm for sequencing experiments in drug discovery. INFORMS J. Comput. 23(1) (2011)

    Google Scholar 

  53. P.I. Frazier (2009–2010), http://people.orie.cornell.edu/pfrazier/src.html

Download references

Acknowledgments

Peter I. Frazier was supported by AFOSR FA9550-12-1-0200, AFOSR FA9550-15-1-0038, NSF CAREER CMMI-1254298, NSF IIS-1247696, and the ACSF’s AVF. Jialei Wang was supported by AFOSR FA9550-12-1-0200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter I. Frazier .

Editor information

Editors and Affiliations

Derivations and Proofs

Derivations and Proofs

This section contains derivations and proofs of equations and theoretical results found in the main text.

1.1 Proof of Proposition 1

Proof

Using Bayes’ rule, the conditional probability density of \(\theta _{[2]}\) at a point \(u_{[2]}\) given that \(\theta _{[1]} = u_{[1]}\) is

$$\begin{aligned} p(\theta _{[2]} = u_{[2]}&\mid \theta _{[1]} = u_{[1]}) = \frac{p(\theta _{[1]} = u_{[1]}, \theta _{[2]}=u_{[2]})}{p(\theta _{[1]} = u_{[1]})} \propto p(\theta _{[1]} = u_{[1]}, \theta _{[2]}=u_{[2]}) \nonumber \\&\propto \exp \left( -\frac{1}{2} \begin{bmatrix} u_{[1]} - \mu _{[1]} \\ u_{[2]} - \mu _{[2]}\end{bmatrix}^T \begin{bmatrix}\varSigma _{[1,1]}&\varSigma _{[1,2]} \\ \varSigma _{[2,1]}&\varSigma _{[2,2]}\end{bmatrix}^{-1} \begin{bmatrix} u_{[1]} - \mu _{[1]} \\ u_{[2]} - \mu _{[2]}\end{bmatrix} \right) . \end{aligned}$$
(3.19)

To deal with the inverse matrix in this expression, we use the following identity for inverting a block matrix: the inverse of the block matrix \(\begin{bmatrix} A&B \\ C&D\end{bmatrix}\), where both A and D are invertible square matrices, is

$$\begin{aligned} \begin{bmatrix} A&B \\ C&D\end{bmatrix}^{-1} = \begin{bmatrix} (A - BD^{-1}C)^{-1}&-(A-BD^{-1}C)^{-1}BD^{-1} \\ -(D-CA^{-1}B)^{-1}CA^{-1}&(D-CA^{-1}B)^{-1}\end{bmatrix}. \end{aligned}$$
(3.20)

Applying (3.20) to (3.19), and using a bit of algebraic manipulation to get rid of constants, we have

$$\begin{aligned} p(\theta _{[2]}=u_{[2]} \mid \theta _{[1]} = u_{[1]}) \propto \exp \left( -\frac{1}{2}(u_{[2]} - \mu ^{\text {new}})^T (\varSigma ^{\text {new}})^{-1} (u_{[2]} - \mu ^{\text {new}}) \right) , \end{aligned}$$
(3.21)

where \(\mu ^{\text {new}} = \mu _{[2]} - \varSigma _{[2,1]}\varSigma _{[1,1]}^{-1}(u_{[1]} - \mu _{[1]})\) and \(\varSigma ^{\text {new}} = \varSigma _{[2,2]}-\varSigma _{[2,1]}\varSigma _{[1,1]}^{-1}\varSigma _{[1,2]}\).

We see that (3.21) is simply the unnormalized probability density function of a normal distribution. Thus the conditional distribution of \(\theta _{[2]}\) given \(\theta _{[1]} = u_{[1]}\) is multivariate normal, with mean \(\mu ^{\text {new}}\) and covariance matrix \(\varSigma ^{\text {new}}\).

1.2 Derivation of Equation (3.16)

Since \(f(x) \sim \text {Normal}(\mu _n(x), \sigma _n^2(x))\), the probability density of f(x) is \(p(f(x)=\) \(z) = \frac{1}{\sqrt{2\pi }} \exp \left( (z - \mu _n(x))^2/2 \sigma _n(x)^2\right) \). We use this to calculate \(\mathrm {EI}(x)\):

$$\begin{aligned} \begin{aligned} \mathrm {EI}(x)&= E_n[ (f(x)-f^*_n)^+] \\&= \int _{f^*_n}^{\infty } (z-f^*_n) \frac{1}{\sqrt{2\pi }\sigma _n(x)} e^{\frac{-(z - \mu _n(x))^2}{2 \sigma _n^2(x)}} dz \\&= \int _{f^*_n}^{\infty } z \frac{1}{\sqrt{2\pi }\sigma _n(x)} e^{\frac{-(z - \mu _n(x))^2}{2 \sigma _n^2(x)}} dz - f_n^*\left( 1-\varPhi \left( \frac{f_n^*-\mu _n(x)}{\sigma _n(x)}\right) \right) \\&= \int _{f^*_n}^{\infty } \left( \mu _n(x) + (z-\mu _n(x)) \right) \frac{1}{\sqrt{2\pi }\sigma _n(x)} e^{\frac{-(z - \mu _n(x))^2}{2 \sigma _n^2(x)}} dz - f_n^*\left( 1-\varPhi \left( \frac{f_n^*-\mu _n(x)}{\sigma _n(x)}\right) \right) \\&= \int _{f^*_n}^{\infty } \left( z-\mu _n(x) \right) \frac{1}{\sqrt{2\pi }\sigma _n(x)} e^{\frac{-(z - \mu _n(x))^2}{2 \sigma _n^2(x)}} dz + (\mu _n(x)-f_n^*)\left( 1-\varPhi \left( \frac{f_n^*-\mu _n(x)}{\sigma _n(x)}\right) \right) \\&= \sigma _n(x)\frac{1}{\sqrt{2\pi }} e^{\frac{-(f^*_n - \mu _n(x))^2}{2 \sigma _n(x)^2}} + (\mu _n(x)-f_n^*)\left( 1-\varPhi \left( \frac{f_n^*-\mu _n(x)}{\sigma _n(x)}\right) \right) \\&= (\mu _n(x)-f_n^*)\left( 1-\varPhi \left( \frac{f_n^*-\mu _n(x)}{\sigma _n(x)}\right) \right) + \sigma _n(x) \varphi \left( \frac{f_n^*-\mu _n(x)}{\sigma _n(x)}\right) \\&= (\mu _n(x)-f_n^*)\varPhi \left( \frac{\mu _n(x) - f_n^*}{\sigma _n(x)}\right) + \sigma _n(x) \varphi \left( \frac{\mu _n(x) - f_n^*}{\sigma _n(x)}\right) . \end{aligned} \end{aligned}$$

1.3 Calculation of the KG factor

The KG factor (3.18) is calculated by first considering how the quantity \(\mu ^*_{n+1} - \mu ^*_n\) depends on the information that we have at time n, and the additional datapoint that we will obtain, \(y_{n+1}\).

First observe that \(\mu ^*_{n+1} - \mu ^*_n\) is a deterministic function of the vector \([\mu _{n+1}(x) : x\in A_{n+1}]\) and other quantities that are known at time n. Then, by applying the analysis in Sect. 3.3.5, but letting the posterior given \(x_{1:n},y_{1:n}\) play the role of the prior, we obtain the following version of (3.10), which applies to any given x,

$$\begin{aligned} \mu _{n+1}(x) = \mu _n(x) + \frac{\varSigma _n(x,x_{n+1})}{\varSigma _n(x_{n+1},x_{n+1}) + \lambda ^2}\left( y_{n+1} - \mu _n(x_{n+1})\right) . \end{aligned}$$
(3.22)

In this expression, \(\mu _n(\cdot )\) and \(\varSigma _n(\cdot ,\cdot )\) are given by (3.13) and (3.14).

We see from this expression that \(\mu _{n+1}(x)\) is a linear function of \(y_{n+1}\), with an intercept and a slope that can be computed based on what we know after the nth measurement.

We will calculate the distribution of \(y_{n+1}\), given what we have observed at time n. First, \(f(x_{n+1}) | x_{1:n},y_{1:n} \sim \text {Normal}\left( \mu _n(x_{n+1}), \varSigma _n(x_{n+1}, x_{n+1})\right) \). Since \(y_{n+1} = f(x_{n+1}) + \varepsilon _{n+1}\), where \(\varepsilon _{n+1}\) is independent with distribution \(\varepsilon _{n+1} \sim \text {Normal}(0, \lambda ^2)\), we have

$$\begin{aligned} y_{n+1} | x_{1:n}, y_{1:n} \sim \text {Normal}\left( \mu _n(x_{n+1}), \varSigma _n(x_{n+1}, x_{n+1}) + \lambda ^2 \right) . \end{aligned}$$

Plugging the distribution of \(y_{n+1}\) into (3.22) and doing some algebra, we have

$$\begin{aligned} \mu _{n+1}(x) | x_{1:n}, y_{1:n} \sim \text {Normal} \left( \mu _n(x), \widetilde{\sigma }^2(x, x_{n+1}) \right) , \end{aligned}$$

where \(\widetilde{\sigma }(x, x_{n+1}) = \frac{\varSigma _n(x, x_{n+1})}{\sqrt{\varSigma _n(x_{n+1}, x_{n+1}) + \lambda ^2}}\). Moreover, we can write \(\mu _{n+1}(x)\) as

$$\begin{aligned} \mu _{n+1}(x) = \mu _n(x) + \widetilde{\sigma }(x, x_{n+1}) Z, \end{aligned}$$

where \(Z=(y_{n+1}-\mu _n(x_{n+1}))/ \sqrt{\varSigma _n(x_{n+1}, x_{n+1}) + \lambda ^2}\) is a standard normal random variable, given \(x_{1:n}\) and \(y_{1:n}\).

Now (3.18) becomes

$$\begin{aligned} \begin{aligned} \mathrm {KG}_n(x)&= E_n \left[ \max _{x'\in A_{n+1}} \mu _n(x') + \widetilde{\sigma }(x', x_{n+1}) Z \mid x_{n+1}=x \right] - \mu ^*_n. \end{aligned} \end{aligned}$$

Thus, computing the KG factor comes down to being able to compute the expectation of the maximum of a collection of linear functions of a scalar normal random variable. Algorithm 2 of [24], with software provided as part of the matlabKG library [53], computes the quantity

$$\begin{aligned} h(a,b) = \mathbb {E}\left[ \max _{i = 1, \ldots , |a|} (a_i + b_i Z)\right] - \max _{i = 1, \ldots , |a|} a_i \end{aligned}$$

for arbitrary equal-length vectors a and b. Using this ability, and letting \(\mu _n(A_{n+1})\) be the vector \([\mu _n(x'): x'\in A_{n+1}]\) and \(\widetilde{\sigma }(A_{n+1},x)\) be the vector \([\widetilde{\sigma }(x', x): x'\in A_{n+1}]\), we can write the KG factor as

$$\begin{aligned} \mathrm {KG}_n(x) = h(\mu _n(A_{n+1}),\widetilde{\sigma }(A_{n+1},x)) + \left[ \max (\mu _n(A_{n+1})) - \mu ^*_n\right] . \end{aligned}$$

If \(A_{n+1}=A_n\), as it is in the versions of the knowledge-gradient method proposed in [24, 25], then the last term \(\max (\mu _n(A_{n+1})) - \mu ^*_n\) is equal to 0 and vanishes.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frazier, P.I., Wang, J. (2016). Bayesian Optimization for Materials Design. In: Lookman, T., Alexander, F., Rajan, K. (eds) Information Science for Materials Discovery and Design. Springer Series in Materials Science, vol 225. Springer, Cham. https://doi.org/10.1007/978-3-319-23871-5_3

Download citation

Publish with us

Policies and ethics