Skip to main content

Remote Spectroscopy Below the Diffraction Limit

  • Chapter
  • First Online:
Reviews in Plasmonics 2015

Part of the book series: Reviews in Plasmonics ((RIP,volume 2015))

  • 1658 Accesses

Abstract

The ability to confine and direct light propagation at the surface of metals via surface plasmon polaritons has been at the centre of the growth in interest in nanoscale engineering of noble metals over the past decades. This chapter reviews the recent development in our laboratories of novel techniques for remote Raman and fluorescence sensing using sub-diffraction limit diameter metallic nanowires as plasmonic waveguides. Applications of remote sensing for chemical and live cell spectroscopy are discussed as well as insights into super-resolution imaging of metallic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ru EL, Etchegoin P (2009) Principles of surface-enhanced raman spectroscopy and related plasmonic effects. Elsevier, Amsterdam

    Google Scholar 

  2. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  PubMed  Google Scholar 

  3. Kuttge M et al (2008) Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy. Appl Phys Lett 93:113110

    Article  Google Scholar 

  4. Ditlbacher H et al (2005) Silver nanowires as surface plasmon resonators. Phys Rev Lett 95:257403

    Article  PubMed  Google Scholar 

  5. Berini P, De Leon I (2012) Surface plasmon-polariton amplifiers and lasers. Nat Photonics 6:16–24

    Article  CAS  Google Scholar 

  6. Paul A et al (2014) Dye-assisted gain of strongly confined surface plasmon polaritons in silver nanowires. Nano Lett 14:3628–3633

    Article  CAS  PubMed  Google Scholar 

  7. Shalaev VM (2007) Optical negative-index metamaterials. Nat Photonics 1:41–48

    Article  CAS  Google Scholar 

  8. Paniagua-Domínguez R, Abujetas DR, Sánchez-Gil JA (2013) Ultra low-loss, isotropic optical negative-index metamaterial based on hybrid metal-semiconductor nanowires. Sci Rep 3: 1507

    Google Scholar 

  9. Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4, e294

    Article  CAS  Google Scholar 

  10. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  PubMed  Google Scholar 

  11. Hutchison JA et al (2009) Subdiffraction limited remote excitation of surface enhanced Raman scattering. Nano Lett 9:995–1001

    Article  CAS  PubMed  Google Scholar 

  12. McQuillan AJ (2009) The discovery of surface-enhanced Raman scattering. Notes Rec R Soc 63:105–109

    Article  Google Scholar 

  13. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  PubMed  Google Scholar 

  14. Kneipp K et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  15. Dickson RM, Lyon LA (2000) Unidirectional plasmon propagation in metallic nanowires. J Phys Chem B 104:6095–6098

    Article  CAS  Google Scholar 

  16. Sanders AW et al (2006) Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett 6:1822–1826

    Article  CAS  PubMed  Google Scholar 

  17. Graff A, Wagner D, Ditlbacher H, Kreibig U (2005) Silver nanowires. Eur Phys J – At Mol Opt Plasma Phys 34:263–269

    CAS  Google Scholar 

  18. Knight MW et al (2007) Nanoparticle-mediated coupling of light into a nanowire. Nano Lett 7:2346–2350

    Article  CAS  PubMed  Google Scholar 

  19. Hao F, Nordlander P (2006) Plasmonic coupling between a metallic nanosphere and a thin metallic wire. Appl Phys Lett 89:103101

    Article  Google Scholar 

  20. Akimov AV et al (2007) Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450:402–406

    Article  CAS  PubMed  Google Scholar 

  21. Wei H et al (2008) Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle−nanowire systems. Nano Lett 8:2497–2502

    Article  CAS  PubMed  Google Scholar 

  22. Lee SJ, Baik JM, Moskovits M (2008) Polarization-dependent surface-enhanced Raman scattering from a silver-nanoparticle-decorated single silver nanowire. Nano Lett 8:3244–3247

    Article  CAS  PubMed  Google Scholar 

  23. Yoon I et al (2009) Single nanowire on a film as an efficient SERS-active platform. J Am Chem Soc 131:758–762

    Article  CAS  PubMed  Google Scholar 

  24. Fang Y, Wei H, Hao F, Nordlander P, Xu H (2009) Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons. Nano Lett 9:2049–2053

    Article  CAS  PubMed  Google Scholar 

  25. Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960

    Article  CAS  Google Scholar 

  26. Lin H et al (2011) Light-assisted nucleation of silver nanowires during polyol synthesis. J Photochem Photobiol Chem 221:220–223

    Article  CAS  Google Scholar 

  27. Huang Y, Fang Y, Zhang Z, Zhu L, Sun M (2014) Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering. Light Sci Appl 3, e199

    Article  CAS  Google Scholar 

  28. Lu G et al (2014) Live-cell SERS endoscopy using plasmonic nanowire waveguides. Adv Mater 26:5124–5128

    Article  CAS  PubMed  Google Scholar 

  29. Yan R et al (2012) Nanowire-based single-cell endoscopy. Nat Nanotechnol 7:191–196

    Article  CAS  Google Scholar 

  30. Fujita Y et al (2014) A silver nanowire-based tip suitable for STM tip-enhanced Raman scattering. Chem Commun 50:9839–9841

    Article  CAS  Google Scholar 

  31. Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45:661–699

    Article  CAS  Google Scholar 

  32. Geddes CD, Aslan K, Gryczynski I, Malicka J, Lakowicz JR (2004) Noble-metal surfaces for metal-enhanced fluorescence. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence 2004. Springer, Boston, pp 365–401

    Google Scholar 

  33. Fort E, Grésillon S (2008) Surface enhanced fluorescence. J Phys Appl Phys 41:013001

    Article  Google Scholar 

  34. Orrit M (2014) Nobel prize in chemistry: celebrating optical nanoscopy. Nat Photonics 8:887–888

    Article  CAS  Google Scholar 

  35. Lin H et al (2012) Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy. ChemPhysChem 13:973–981

    Article  CAS  PubMed  Google Scholar 

  36. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B 105:5599–5611

    Article  CAS  Google Scholar 

  37. Blythe KL, Titus EJ, Willets KA (2014) Triplet-state-mediated super-resolution imaging of fluorophore-labeled gold nanorods. ChemPhysChem 15:784–793

    Article  CAS  PubMed  Google Scholar 

  38. Titus EJ, Willets KA (2013) Accuracy of superlocalization imaging using gaussian and dipole emission point-spread functions for modeling gold nanorod luminescence. ACS Nano 7:6258–6267

    Article  CAS  PubMed  Google Scholar 

  39. Su L et al (2015) Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy. Nat Commun 6: 6287

    Google Scholar 

  40. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schüttpelz M, Wolter S, van de Linde S, Heilemann M, Sauer M (2010) dSTORM: real-time subdiffraction-resolution fluorescence imaging with organic fluorophores. In: Proceedings of SPIE 7571, 75710V–75710V–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Uji-i .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hutchison, J.A., Uji-i, H. (2016). Remote Spectroscopy Below the Diffraction Limit. In: Geddes, C. (eds) Reviews in Plasmonics 2015. Reviews in Plasmonics, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-24606-2_16

Download citation

Publish with us

Policies and ethics