Skip to main content

An Online Learning-Based Adaptive Biometric System

  • Chapter
  • First Online:
Adaptive Biometric Systems

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

In the last decade, adaptive biometrics has become an emerging field of research. Considering the fact that limited work has been undertaken on adaptive biometrics using machine learning techniques, in this chapter we list and discuss a few out of many potential learning techniques that can be applied to build an adaptive biometric system. In order to illustrate the efficacy of one of the incremental learning techniques from the literature, we built an adaptive biometric system. For experimentation, we have used multi-modal ocular (sclera and iris) data. The preliminary results have been reported in the results section, which are very promising.

\(^*\)The first and the second author have equal contribution in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rattani, A., Freni, B., Marcialis, G.L., Roli, F.: Template update methods in adaptive biometric systems: a critical review. In: Proceedings of Third International Conference Biometrics, Sardinia, Alghero, pp. 847–856 (2009)

    Google Scholar 

  2. Rattani, A., Marcialis, G.L., Granger, E., Roli, F.: A Dual-staged Classification-selection approach for automated update of biometric templates. In: International Conference on Pattern Recognition (ICPR), pp. 2972–2975. Japan (2012)

    Google Scholar 

  3. Rattani, A.: Adaptive biometric system based on template update procedures. Ph.D. thesis, University of Cagliari, Italy (2010)

    Google Scholar 

  4. Rattani, A., Freni, B., Marcialis, G.L., Roli, F.: Template update methods in adaptive biometric systems: a critical review. In: Proceedings of Third International Conference Biometrics, pp. 847–856. Sardinia, Alghero (2009)

    Google Scholar 

  5. Poh, N., Kittler, J., Marcel, S., Matrouf, D., Bonastre, J.F.: Model and score adaptation for biometric systems: coping with device interoperability and changing acquisition conditions. In: Proceedings of the International Confernece on Pattern Recognition, pp. 1229–1232. Istambul, Turkey (2010)

    Google Scholar 

  6. Uludag, U., Ross, A., Jain, A.: Biometric template selection and update: a case study in fingerprints. Pattern Recogn. 37(7), 1533–1542 (2004)

    Article  MATH  Google Scholar 

  7. Oh, K., Toh K.: Extracting sclera features for cancelable identity verification. In: 5th IAPR International Conference on Biometric, pp. 245–250 (2012)

    Google Scholar 

  8. Jiang, X., Ser, W.: Online fingerprint template improvement. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1121–1126 (2008)

    Article  Google Scholar 

  9. Ryu, C., Hakil, K., Jain, A.K.: Template adaptation based finger print verification. In: Proceedings of 18th International Conference on Pattern Recognition, pp. 582–585. Hong Kong (2006)

    Google Scholar 

  10. Liu, X., Chen, T., Thornton, S.M.: Eigenspace updating for non stationary process and its application to face recognition. Pattern Recognit. 36(9), 1945–1959 (2003)

    Article  MATH  Google Scholar 

  11. Roli, F, Didaci, L., Marcialis, G.L.: Template co-update in multimodal biometric systems. In: Proceedings of IEEE/IAPR International Conference on Biometrics, pp. 1194–1202. Seoul, Korea (2007)

    Google Scholar 

  12. Roli, F., Marcialis, G.L.: Semi-supervised PCA-based face recognition using self-training. In: Proceedings of the Joint IAPR International Workshop on S+SSPR06, pp. 560–568. Hong Kong, China (2006)

    Google Scholar 

  13. Rattani, A., Marcialis, G.L., Roli, F.: Biometric template update usingthe graph mincut: a case study in face verification. In: Proceedings of Sixth IEEE Biometric Symposium, pp. 23–28. Tampa, USA (2008)

    Google Scholar 

  14. Poh, N., Rattani, A., Roli, F.: Critical analysis of adaptive biometric systems. IET Biometrics 1(4), 179–187 (2012)

    Article  Google Scholar 

  15. Das, A.: Face recognition in reduced eigen plane. In: International Conference on Communications, Devices and Intelligent Systems, pp. 620–623 (2012)

    Google Scholar 

  16. Das, A., Pal, U., Ballester, M.F., Blumenstein, M.: A new wrist vein biometric system. In: Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 68–75 (2014)

    Google Scholar 

  17. Das, A., Parekh, R.: Iris recognition using a scalar based template in eigenspace. Int. J. Comput. Sci. Telecommun. 3(5), 74–79 (2012)

    Google Scholar 

  18. Das, A., Parekh, R.: Iris recognition in 2D eigen-space. Int. J. Comput. Appl. 52(19), 1–6 (2012)

    Google Scholar 

  19. Derakhshani, R., Ross, A., Crihalmeanu, S.: A new biometric modality based on conjunctival vasculature. In: Proceedings of Artificial Neural Networks in Engineering, pp. 1–8 (2006)

    Google Scholar 

  20. Khosravi, M.H., Safabakhsh, R.: Human eye sclera detection and tracking using a modified time-adaptive self-organizing map. Pattern Recogn. 41, 2571–2593 (2008)

    Article  Google Scholar 

  21. Zhou, Z., Du, Y., Thomas, N.L., Delp, E.J.: A new biometric sclera recognition. IEEE Trans. Syst. Man Cybern. -PART A: Syst. Hum. 42(3), 571–583 (2012)

    Article  Google Scholar 

  22. Zhou, Z., Du, Y., Thomas, N.L., Delp, E.J.: Quality fusion based multi-modal eye recognition. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 1297–1302 (2012)

    Google Scholar 

  23. Das, A., Pal, U., Ballester, M.F., Blumenstein, M.: Fuzzy logic based sclera recognition. In: FUZZ-IEEE, pp. 561–568 (2014)

    Google Scholar 

  24. Tankasala, S.P., Doynov, P., Derakhshani, R.R., Ross, A., Crihalmeanu, S.: Biometric recognition of conjunctival vasculature using GLCM features. In: International Conference on Image Information Processing, pp. 1–6 (2011)

    Google Scholar 

  25. Zhou, Z., Du, Y., Thomas, N.L., Delp, E.J.: Multi angled sclera recognition. In: IEEE Workshop on Computational Intelligence in Biometrics and Identity Management, pp. 103–108 (2011)

    Google Scholar 

  26. Crihalmeanu, S., Ross, A.: Multispectral sclera patterns for ocular biometric recognition. Pattern Recogn. Lett. 33, 1860–1869 (2012)

    Article  Google Scholar 

  27. Das, A., Pal, U., Ballester, M.F.A., Blumenstein, M.: A new method for sclera vessel recognition using OLBP. In: Chinese Conference on Biometric Recognition, LNCS, vol. 8232, pp. 370–377 (2013)

    Google Scholar 

  28. Ferrer, M.A., Morales, A., Das, A., Blumenstein, M., Pal, U.: Model based sclera vessels segmentation with SIFT recognition and its combination with Iris. In: Spanish biometric consodium, VII Jornadas de Reconocimiento Bio-metrico de Personas, pp. 68–76 (2013)

    Google Scholar 

  29. Das, A., Pal, U., Ballester, M.F., Blumenstein, M.: Sclera recognition using D-SIFT. In: 13th International Conference on Intelligent Systems Design and Applications, pp. 74–79 (2013)

    Google Scholar 

  30. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. Proc. Comput. Vis. Pattern Recogn. 2, 2169–2178 (2006)

    Google Scholar 

  31. Das, A., Pal, U., Ballester, M.F., Blumenstein, M.: A new efficient and adaptive sclera recognition system. In: Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 1–8 (2014)

    Google Scholar 

  32. Das, A., Pal, U., Ballester, M.F., Blumenstein, M.: Multi angle based lively sclera biometrics at a distance. In: Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 22–29 (2014)

    Google Scholar 

  33. Zhou, Z., Du, Y., Thomas, N.L., Delp, E.J.: Multimodal eye recognition. Proc. Int. Soc. Optical Eng. 7708(770806), 1–10 (2010)

    Google Scholar 

  34. Gottemukkula, V., Saripalle, S.K., Tankasala, S.P., Derakhshani, R., Pasula, R., Ross, A.: Fusing iris and conjunctival vasculature: ocular biometrics in the visible spectrum. In: IEEE Conference on Technologies for Homeland Security, pp. 150–155 (2012)

    Google Scholar 

  35. Das, A., Pal, U., Blumenstein, M., Ballester, M.F.: Sclera recognition—a survey. Adv. Comput. Vis. Pattern Recogn. 917–921 (2013)

    Google Scholar 

  36. Scholz, M., Klinkenberg, R.: Boosting classifiers for drifting concepts. In: IDA—Special Issue on Knowledge Discovery from Data Streams, vol. 11, Issue 1, pp. 3–28 (2007)

    Google Scholar 

  37. Rodrigues, P.P., Gama, J.A., Arajo, J.A., Lopes, L.: L2GClust: local-to-global clustering of stream sources. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 1006–1011. ACM (2011)

    Google Scholar 

  38. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for drifting concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)

    MATH  Google Scholar 

  39. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23, 69–101 (1996)

    Google Scholar 

  40. Street, N.W., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: KDD ’01: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 377–382. ACM (2001)

    Google Scholar 

  41. Klinkenberg, R.: Learning drifting concepts: example selection vs. example weighting. Intell. Data Anal. 8, 281–300 (2004)

    Google Scholar 

  42. Fern, A., Givan, R.: Online ensemble learning: an empirical study. Mach. Learn. 53, 71–109 (2003)

    Article  MATH  Google Scholar 

  43. Maloof, M.A., Michalski, R.S.: Incremental learning with partial instance memory. Artif. Intell. 154(1–2), 95–126 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shilton, A., Palaniswami, M., Ralph, D., Tsoi, A.C.: Incremental training of support vector machines. IEEE Trans. Neural Networks 16, 114–131 (2005)

    Article  Google Scholar 

  45. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley (2004)

    Google Scholar 

  46. Brown, G.: Ensemble learning. In: Encyclopedia of Machine Learning, pp. 1–9 (2010)

    Google Scholar 

  47. Polikar, R.: Bootstrap inspired techniques in computational intelligence. IEEE Signal Process. Mag. 24, 57–72 (2007)

    Article  Google Scholar 

  48. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  49. Dietterich, T.G.: Machine learning research: four current directions. Artif. Intell. 18(4), 97–136 (1997)

    Google Scholar 

  50. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40(2), 139–157 (2000)

    Article  Google Scholar 

  51. Kuncheva, I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51, 181–207 (2003)

    Article  MATH  Google Scholar 

  52. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Google Scholar 

  53. Ralaivola, L., d’Alche Buc, F.: Incremental support vector machine learning: a local approach. Lect. Notes Comput. Sci. 2130, 322–329 (2001)

    Google Scholar 

  54. Minku, L.L., White, A., Yao, X.: The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans. Knowl. Data Eng. 22, 730–742 (2010)

    Article  Google Scholar 

  55. Tang, E.K., Sunganthan, P.N., Yao, X.: An analysis of diversity measures. Mach. Learn. 65, 247–271 (2006)

    Google Scholar 

  56. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: Neural-gas network for vector quantization and its application to time-series rrediction. IEEE Trans. Neural Networks 4(4), 558–569 (1993)

    Article  Google Scholar 

  57. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of the Thirteenth International Conference on Machine Learning (ICML’96), pp. 148–156. Morgan Kaufmann, Bari, Italy (1996)

    Google Scholar 

  58. Minku, L.L., Yao, X.: DDD: a new ensemble approach for dealing with concept drift. IEEE Trans. Knowl. Data Eng. (2010)

    Google Scholar 

  59. Kunwar, R., Pal, U., Blumenstein, M.: Semi-supervised online learning of handwritten characters using a bayesian classifier. In: Second IAPR Asian Conference on Pattern Recognition, pp. 717–721. Okinawa, Japan (2013)

    Google Scholar 

  60. Kunwar, R., Pal, U., Blumenstein, M.: Semi-supervised online bayesian network learner for handwritten characters recognition. In: Twenty Second International Conference on Pattern Recognition (ICPR), pp. 3104–3109. Stockholm, Sweden (2014)

    Google Scholar 

  61. William, H., Saul, A., William, T., Flannery, B.P.: Support Vector Machines. Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007). ISBN 978-0-521-88068-8

    Google Scholar 

  62. Vladimir, V., Vapnik, V.: Statistical Learning Thoery. Springer, New York (1998)

    Google Scholar 

  63. Syed, N.A., Liu, H., Sung, K.K.: Incremental learning with support vector machines. In: SVM workshop, IJCAI (1999)

    Google Scholar 

  64. Ruping, S.: Incremental learning with support vector machines. Technical Report TR-18, Universitat Dortmund, SFB475 (2002)

    Google Scholar 

  65. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. In: Diettrich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Proceedings Systems (NIPS 01), pp. 785–792 (2001)

    Google Scholar 

  66. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 409–415. MIT Press (2001)

    Google Scholar 

  67. Laskov, P., Gehl, C., Kruger, S., Muller, K.R.: Incremental support vector learning: analysis, implementation and applications. J. Mach. Learn. Res. 1909–1936 (2006)

    Google Scholar 

  68. Shilton, A., Palaniswami, M., Ralph, D., Tsol, A.C.: Incremental training of support vector machines. IEEE Trans. Neural Networks 16(1), 114–131 (2005)

    Article  Google Scholar 

  69. Muhlbaier, M., Topalis, A., Polikar, R.: Learn++. NC: combining ensemble of classifiers combined with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE Trans. Neural Networks 20(1), 152–168 (2009)

    Article  Google Scholar 

  70. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  71. Shen, F., Sakurai, K., Kamiya, Y., Hasegawa, O.: An online semi-supervised active learning algorithm with self-organizing incremental neural network. In: International Joint Conference on Neural Network (IJCNN), pp. 1139–1144 (2007)

    Google Scholar 

  72. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern 43(1), 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  73. Shen, F., Hasegawa, O.: An incremental network for on-line unsupervised classification and topology learning. Neural Networks 19(1), 90–106 (2006)

    Article  MATH  Google Scholar 

  74. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detect-ing compact well-separated clusters. J. Cybern. 3, 32–57 (1973)

    Article  MATH  Google Scholar 

  75. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  76. Li, B.N., Chui, C.K., Chang, S., Ong, S.H.: Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput. Biol. Med. 41(1), 1–10 (2011)

    Article  Google Scholar 

  77. Pizer, S.M., Amburn, E.P., Austin, J.D.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39, 355–368 (1987)

    Article  Google Scholar 

  78. Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Conference Series In Applied Mathematics, SIAM Ed, pp. 117–119 (1992)

    Google Scholar 

  79. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Proces. 19(2) (2010)

    Google Scholar 

  80. Kabir, Md. H., Jabid, T., Chae, O.: A local directional pattern variance (LDPv) based face descriptor for human facial expression recognition. In: Proceedings of the IEEE Advanced Video and Signal Based Surveillance (AVSS), pp. 526–532 (2010)

    Google Scholar 

  81. Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)

    Article  Google Scholar 

  82. Proena, H., Alexandre, L.A.: UBIRIS: a noisy iris image database. In: Proceedings of ICIAP: International Conference on Image Analysis and Processing, vol. 1, pp. 970–977 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Das, A., Kunwar, R., Pal, U., Ferrer, M.A., Blumenstein, M. (2015). An Online Learning-Based Adaptive Biometric System. In: Rattani, A., Roli, F., Granger, E. (eds) Adaptive Biometric Systems. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-24865-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24865-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24863-9

  • Online ISBN: 978-3-319-24865-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics