Skip to main content

Diagnostic Applications of Nuclear Medicine: Breast Cancer

Nuclear Oncology

Abstract

This chapter details the use of radiotracer methods in application to breast cancer. We provide a background on breast cancer incidence and clinical features, followed by an overview of current treatment approaches. We then review the use of radionuclide methods applied to major diagnostic tasks for breast cancer that include detection, staging (locoregional and distant), response to therapy, and surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

[18F]FDG:

[18F]Fluorodeoxyglucose

18F-FES:

16 Alpha-18F-fluoro-17 beta-estradiol

18F-FFNP:

21-18F-fluoro-16α,17α-[(R)-(10-α-furylmethylidene)dioxy]-19-norpregn-4-Ene-3,20-dione

18F-FLT:

18F-fluorothymidine

99mTc-HDP or 99mTc-HMDP:

99mTc-hydroxymethylene diphosphonate

99mTc-MDP:

99mTc-methylene diphosphonate

ACOG:

American College of Obstetricians and Gynecologists

ACR:

American College of Radiology

ACS:

American Cancer Society

AI:

Aromatase inhibitor

AJCC:

American Joint Committee on Cancer

BCS:

Breast-conserving surgery

BODAICEA:

Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm

BRCA1:

Breast cancer type 1 susceptibility protein

BRCA2:

Breast cancer type 2 susceptibility protein

BRCAPRO:

BRCA mutation carrier prediction model

BS:

Bone scintigraphy

BSGI:

Breast-specific gamma imaging, also known as molecular breast imaging

CHEK2:

Checkpoint kinase 2

CR:

Complete response

CT:

X-ray computed tomography

DCIS:

Ductal carcinoma in situ

DFS:

Disease-free survival

ENE:

Extranodal extension

ER:

Estrogen receptor

ERBB2:

Gene for the HER2 receptor

FISH:

Fluorescent in situ hybridization

HER2:

Human epidermal growth factor receptor 2, also known as receptor tyrosine-protein kinase erbB-2, or HER2/neu

IM:

Internal mammary

LABC:

Locally advanced breast cancer

MBC:

Metastatic breast cancer

MHT:

Menopausal hormone therapy

MRI:

Magnetic resonance imaging

mTOR:

Mammalian target of rapamycin

Na18F:

Sodium [18F]fluoride

NAT:

Neo-adjuvant therapy

NCCN:

National Comprehensive Cancer Network

NPV:

Negative predictive value

OS:

Overall survival

p53:

Tumor protein p53, also known as cellular tumor antigen p53, phosphoprotein p53, tumor suppressor p53, antigen NY-CO-13, or transformation-related protein 53 (TRP53)

PALB2:

Partner and localizer of BRCA2, also known as FANCN

pCR:

Pathologic complete response

PEM:

Positron emission mammography

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PR:

Progesterone receptor

PTEN:

Phosphatase and tensin homolog

RECIST:

Response evaluation criteria in solid tumors

SBI:

Society of Breast Imaging

SERM:

Selective estrogen receptor modulator

SLN:

Sentinel lymph node

SNP:

Single nucleotide polymorphism

SPECT:

Single-photon emission computed tomography

SPECT/CT:

Single-photon emission computed tomography/computed tomography

SUV:

Standardized uptake value

TNBC:

Triple-negative breast cancer

TNM:

AJCC staging system based on parameters “T” (tumor status), “N” (lymph node status) and “M” (distant metastasis status)

US:

Ultrasonography

References

  1. Siegel RL. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. Society, A.C. American Cancer Society. Cancer facts & figures 2015. Atlanta: American Cancer Society; 2015.

    Google Scholar 

  3. Writing Group for the Women’s Health Initiative, I. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA. 2002;288(3):321–33.

    Article  Google Scholar 

  4. Berry DA, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med. 2005;353(17):1784–92.

    Article  CAS  PubMed  Google Scholar 

  5. DeVita VTJ, Rosenberg SA. Two hundred years of cancer research. N Engl J Med. 2012;366(23):2207–14.

    Article  CAS  PubMed  Google Scholar 

  6. Oeffinger KC, et al. Breast cancer screening for women at average risk: 2015 guideline update from the american cancer society. JAMA. 2015;314(15):1599–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Salehi F, et al. Review of the etiology of breast cancer with special attention to organochlorines as potential endocrine disruptors. J Toxicol Environ Health B Crit Rev. 2008;11(3–4):276–300.

    Article  CAS  PubMed  Google Scholar 

  8. Howell A, et al. Risk determination and prevention of breast cancer. Breast Cancer Res: BCR. 2014;16(5):446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Colditz GA, Bohlke K. Priorities for the primary prevention of breast cancer. CA Cancer J Clin. 2014;64(3):186–94.

    Article  PubMed  Google Scholar 

  10. Martino S, et al. Continuing outcomes relevant to evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst. 2004;96(23):1751–61.

    Article  CAS  PubMed  Google Scholar 

  11. Goss PE, et al. Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med. 2011;364(25):2381–91.

    Article  CAS  PubMed  Google Scholar 

  12. Parkin DM, Boyd L, Walker LC. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer. 2011;105(S2):S77–81.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Michailidou K, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45(4):353–61e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barnes DR, Antoniou AC. Unravelling modifiers of breast and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers: update on genetic modifiers. J Intern Med. 2012;271(4):331–43.

    Article  CAS  PubMed  Google Scholar 

  15. Pharoah PDP, et al. Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med. 2008;358(26):2796–803.

    Article  CAS  PubMed  Google Scholar 

  16. Gail MH, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81(24):1879–86.

    Article  CAS  PubMed  Google Scholar 

  17. Claus EB, Risch N, Thompson WD. Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer. 1994;73(3):643–51.

    Article  CAS  PubMed  Google Scholar 

  18. Berry DA, et al. BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol. 2002;20(11):2701–12.

    Article  CAS  PubMed  Google Scholar 

  19. Antoniou AC, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98(8):1457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23(7):1111–30.

    Article  PubMed  Google Scholar 

  21. Moy L, et al. ACR appropriateness criteria stage I breast cancer: initial workup and surveillance for local recurrence and distant metastases in asymptomatic women. J Am Coll Radiol. 2014;11(12, Part A):1160–8.

    Article  PubMed  Google Scholar 

  22. Fachal L, Dunning AM. From candidate gene studies to GWAS and post-GWAS analyses in breast cancer. Curr Opin Genet Dev. 2015;30:32–41.

    Article  CAS  PubMed  Google Scholar 

  23. Gail MH. Value of adding single-nucleotide polymorphism genotypes to a breast cancer risk model. J Natl Cancer Inst. 2009;101(13):959–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schnitt SJ. Traditional and newer pathologic factors. J Natl Cancer Inst Monogr. 2001;30:22–6.

    Article  Google Scholar 

  25. Symmans WF. A pathologist’s perspective on emerging genomic tests for breast cancer. Semin Oncol. 2007;34(2 Suppl 3):S4–9.

    Article  PubMed  Google Scholar 

  26. Sotiriou C, Pusztai Gene-Expression L. Signatures in breast cancer. N Engl J Med. 2009;360(8):790–800.

    Article  CAS  PubMed  Google Scholar 

  27. Trop I, et al. Molecular classification of infiltrating breast cancer: toward personalized therapy. Radiographics. 2014;34(5):1178–95.

    Article  PubMed  Google Scholar 

  28. Perou CM, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  29. Sorlie T, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sorlie T, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100:8418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sotiriou C, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A. 2003;100:10393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu Z, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 2006;7(1):1–12.

    Article  CAS  Google Scholar 

  33. Walker RA. Immunohistochemical markers as predictive tools for breast cancer. J Clin Pathol. 2008;61(6):689–96.

    Article  CAS  PubMed  Google Scholar 

  34. Ross JS, et al. Commercialized multigene predictors of clinical outcome for breast cancer. Oncologist. 2008;13(5):477–93.

    Article  PubMed  Google Scholar 

  35. Paik S, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

  36. Paik S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor – positive breast cancer. J Clin Oncol. 2006;24(23):3726–34.

    Article  CAS  PubMed  Google Scholar 

  37. Singletary SE, Connolly JL. Breast cancer staging: working with the sixth edition of the AJCC cancer staging manual. CA Cancer J Clin. 2006;56(1):37–47. quiz 50–1.

    Article  PubMed  Google Scholar 

  38. Edge SB, Compton CC. The American Joint Committee on cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–4. epub.

    Article  PubMed  Google Scholar 

  39. Edge SB, et al. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.

    Google Scholar 

  40. Elmore JG, et al. Screening for breast cancer. JAMA. 2005;293(10):1245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McDonald ES, et al. Baseline screening mammography: performance of full-field digital mammography versus digital breast tomosynthesis. Am J Roentgenol. 2015;205(5):1143–8.

    Article  Google Scholar 

  42. Friedewald SM, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014;311(24):2499–507.

    Article  CAS  PubMed  Google Scholar 

  43. Stavros AT, et al. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology. 1995;196(1):123–34.

    Article  CAS  PubMed  Google Scholar 

  44. Lehman CD, Schnall MD. Imaging in breast cancer: magnetic resonance imaging. Breast Cancer Res. 2005;7(5):215–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lehman CD. Clinical indications: what is the evidence? Eur J Radiol. 2012;81 Suppl 1:S82–4.

    Article  PubMed  Google Scholar 

  46. Saslow D, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89.

    Article  PubMed  Google Scholar 

  47. Keating NL, et al. Surveillance testing among survivors of early-stage breast cancer. J Clin Oncol. 2007;25(9):1074–81.

    Article  PubMed  Google Scholar 

  48. Network NCC. NCCN clinical practice guidelines in oncology. Breast Cancer. Version 1. 2016. Available at https://www.nccn.org

  49. Rhodes DJ, et al. Dedicated dual-head gamma imaging for breast cancer screening in women with mammographically dense breasts. Radiology. 2011;258(1):106–18.

    Article  PubMed  Google Scholar 

  50. Greene LR, Wilkinson D. The role of general nuclear medicine in breast cancer. J Med Radiat Sci. 2015;62(1):54–65.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Brem RF, Rechtman LR. Nuclear medicine imaging of the breast: a novel, physiologic approach to breast cancer detection and diagnosis. Radiol Clin. 2010;48(5):1055–74.

    Article  Google Scholar 

  52. Mettler F, Guiberteau M. Essentials of nuclear medicine imaging. 6th ed. St. Louis: Mosby Elsevier; 2012.

    Google Scholar 

  53. Specht JM, Mankoff DA. Advances in molecular imaging for breast cancer detection and characterization. Breast Cancer Res: BCR. 2012;14(2):206.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Buscombe JR, et al. Uptake of Tc-99m MIBI related to tumour size and type. Anticancer Res. 1997;17(3B):1693–4.

    CAS  PubMed  Google Scholar 

  55. Mankoff DA, et al. [Tc-99m]-sestamibi uptake and washout in locally advanced breast cancer are correlated with tumor blood flow. Nucl Med Biol. 2002;29(7):719–27.

    Article  CAS  PubMed  Google Scholar 

  56. Scopinaro F, et al. Technetium-99m sestamibi: an indicator of breast cancer invasiveness. Eur J Nucl Med. 1994;21(9):984–7.

    Article  CAS  PubMed  Google Scholar 

  57. O’Connor M, Rhodes D, Hruska C. Molecular breast imaging. Expert Rev Anticancer Ther. 2009;9(8):1073–80.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hendrick RE. Radiation doses and cancer risks from breast imaging studies. Radiology. 2010;257(1):246–53.

    Article  PubMed  Google Scholar 

  59. Avril N, et al. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med. 2001;42(1):9–16.

    CAS  PubMed  Google Scholar 

  60. Bos R, et al. Biologic correlates of 18fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 2002;20(2):379–87.

    Article  CAS  PubMed  Google Scholar 

  61. Scheidhauer K, Walter C, Seemann MD. FDG PET and other imaging modalities in the primary diagnosis of suspicious breast lesions. Eur J Nucl Med Mol Imaging. 2004;31 Suppl 1:S70–9.

    Article  PubMed  Google Scholar 

  62. Kumar RS, et al. Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Breast Cancer Res Treat. 2006;98:267–74.

    Article  PubMed  Google Scholar 

  63. Rosen EL, Eubank WB, Mankoff DA. FDG PET, PET/CT, and breast cancer imaging. Radiographics. 2007;27 Suppl 1:S215–29.

    Article  PubMed  Google Scholar 

  64. Raylman RR, et al. The positron emission mammography/tomography breast imaging and biopsy system (PEM/PET): design, construction and phantom-based measurements. Phys Med Biol. 2008;53(3):637–53.

    Article  PubMed  Google Scholar 

  65. Berg WA, et al. Breast cancer: comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology. 2011;258(1):59–72.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rosen EL, et al. Detection of primary breast carcinoma with a dedicated, large-field-of-view FDG PET mammography device: initial experience. Radiology. 2005;234(2):527–34.

    Article  PubMed  Google Scholar 

  67. Berg WA, et al. High-resolution fluorodeoxyglucose positron emission tomography with compression (“positron emission mammography”) is highly accurate in depicting primary breast cancer. Breast J. 2006;12(4):309–23.

    Article  PubMed  Google Scholar 

  68. Newman EA, Newman LA. Lymphatic mapping techniques and sentinel lymph node biopsy in breast cancer. Surg Clin North Am. 2007;87(2):353–64. viii.

    Article  PubMed  Google Scholar 

  69. Albertini J, et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA. 1996;276:1818–22.

    Article  CAS  PubMed  Google Scholar 

  70. Giuliano AE, et al. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg. 1994;220(3):391–8. discussion 398–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Krag DN, et al. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg Oncol. 1993;2(6):335–9. discussion 340.

    Article  CAS  PubMed  Google Scholar 

  72. Lyman GH, et al. American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J Clin Oncol. 2005;23(30):7703–20.

    Article  PubMed  Google Scholar 

  73. Langer I, et al. Morbidity of sentinel lymph node biopsy (SLN) alone versus SLN and completion axillary lymph node dissection after breast cancer surgery: a prospective Swiss multicenter study on 659 patients. Ann Surg. 2007;245(3):452–61.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vanderveen KA, et al. Upstaging and improved survival of early breast cancer patients after implementation of sentinel node biopsy for axillary staging. Ann Surg Oncol. 2006;13(11):1450–6.

    Article  PubMed  Google Scholar 

  75. Giuliano AE. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA. 2011;305(6):569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aarsvold JN, Alazraki NP. Update on detection of sentinel lymph nodes in patients with breast cancer. Semin Nucl Med. 2005;35(2):116–28.

    Article  PubMed  Google Scholar 

  77. Wallace AM, et al. Lymphoseek: a molecular imaging agent for melanoma sentinel lymph node mapping. Ann Surg Oncol. 2007;14(2):913–21.

    Article  PubMed  Google Scholar 

  78. Sugg SL, et al. Should internal mammary nodes be sampled in the sentinel lymph node era? Ann Surg Oncol. 2000;7:188–92.

    Article  CAS  PubMed  Google Scholar 

  79. Estourgie SH, et al. Lymphatic drainage patterns from the breast. Ann Surg. 2004;239(2):232–7.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Farrus B, et al. Incidence of internal mammary node metastases after a sentinel lymph node technique in breast cancer and its implication in the radiotherapy plan. Int J Radiat Oncol Biol Phys. 2004;60(3):715–21.

    Article  PubMed  Google Scholar 

  81. Paganelli G, et al. Internal mammary node lymphoscintigraphy and biopsy in breast cancer. Q J Nucl Med. 2002;46(2):138–44.

    CAS  PubMed  Google Scholar 

  82. van Rijk MC, et al. Clinical implications of sentinel nodes outside the axilla and internal mammary chain in patients with breast cancer. J Surg Oncol. 2006;94(4):281–6.

    Article  PubMed  Google Scholar 

  83. Yao MS, et al. Internal mammary nodal chain drainage is a prognostic indicator in axillary node-positive breast cancer. Ann Surg Oncol. 2007;14(10):2985–93.

    Article  PubMed  Google Scholar 

  84. van der Ploeg IM, et al. Axillary and extra-axillary lymph node recurrences after a tumor-negative sentinel node biopsy for breast cancer using intralesional tracer administration. Ann Surg Oncol. 2008;15(4):1025–31.

    Article  PubMed  Google Scholar 

  85. Manca G, et al. Sentinel lymph node mapping in breast cancer: a critical reappraisal of the internal mammary chain issue. Q J Nucl Med Mol Imaging. 2014;58(2):114–26.

    CAS  PubMed  Google Scholar 

  86. Utech CI, Young CS, Winter PF. Prospective evaluation of fluorine-18 fluorodeoxyclucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med. 1996;23(12):1588–93.

    Article  CAS  PubMed  Google Scholar 

  87. Avril N, et al. Metabolic characterization of breast tumors with positron emission tomography using F-18 fluorodeoxyglucose. J Clin Oncol. 1996;14(6):1848–57.

    Article  CAS  PubMed  Google Scholar 

  88. Veronesi P, Rodriguez-Fernandez J, Intra M. Controversies in the use of sentinel nodes: microinvasion, post surgery and after preoperative systemic treatment. Breast. 2007;16 Suppl 2:S67–70.

    Article  PubMed  Google Scholar 

  89. Pritchard KI, et al. Prospective study of 2-[18F]fluorodeoxyglucose positron emission tomography in the assessment of regional nodal spread of disease in patients with breast cancer: an Ontario Clinical Oncology Group Study. J Clin Oncol. 2012;30(12):1274–9.

    Article  CAS  PubMed  Google Scholar 

  90. Jeong YJ. Additional value of F-18 FDG PET/CT for initial staging in breast cancer with clinically negative axillary nodes. Breast Cancer Res Treat. 2014;145(1):137–42.

    Article  PubMed  Google Scholar 

  91. Mankoff DA, et al. [18F]fluorodeoxyglucose positron emission tomography – computed tomography in breast cancer: when… when not? J Clin Oncol. 2012;30(12):1252–4.

    Article  CAS  PubMed  Google Scholar 

  92. Perez EA, Foo ML, Fulmer JT. Management of locally advanced breast cancer. Oncology (Williston Park). 1997;11(9 Suppl 9):9–17.

    CAS  Google Scholar 

  93. Chia S, et al. Locally advanced and inflammatory breast cancer. J Clin Oncol. 2008;26(5):786–90.

    Article  PubMed  Google Scholar 

  94. Carlson RW, McCormick B. Update: NCCN breast cancer clinical practice guidelines. J Natl Compr Canc Netw. 2005;3 Suppl 1:S7–11.

    PubMed  Google Scholar 

  95. Groheux D, et al. 18F-FDG PET/CT in staging patients with locally advanced or inflammatory breast cancer: comparison to conventional staging. J Nucl Med. 2013;54(1):5–11.

    Article  PubMed  Google Scholar 

  96. Jung SY, et al. Factors associated with mortality after breast cancer metastasis. Cancer Causes Control. 2011;23(1):103–12.

    Article  PubMed  Google Scholar 

  97. Manders K, et al. Clinical management of women with metastatic breast cancer: a descriptive study according to age group. BMC Cancer. 2006;6:179.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Plunkett TA, Smith P, Rubens RD. Risk of complications from bone metastases in breast cancer. Eur J Cancer. 2000;36(4):476–82.

    Article  CAS  PubMed  Google Scholar 

  99. Wei S, et al. Breast carcinomas with isolated bone metastases have different hormone receptor expression profiles than those with metastases to other sites or multiple organs. Ann Diagn Pathol. 2011;15(2):79–83.

    Article  PubMed  Google Scholar 

  100. Crippa F, et al. Bone scintigraphy in breast cancer: a ten-year follow-up study. J Nucl Biol Med. 1993;37(2):57–61.

    CAS  PubMed  Google Scholar 

  101. Hamaoka T, et al. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22(14):2942–53.

    Article  PubMed  Google Scholar 

  102. Savelli G, et al. Bone scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med. 2001;45(1):27–37.

    CAS  PubMed  Google Scholar 

  103. Even-Sapir E, et al. Role of SPECT in differentiating malignant from benign lesions in the lower thoracic and lumbar vertebrae. Radiology. 1993;187(1):193–8.

    Article  CAS  PubMed  Google Scholar 

  104. Han LJ. Comparison of bone single-photon emission tomography and planar imaging in the detection of vertebral metastases in patients with back pain. Eur J Nucl Med. 1998;25(6):635–8.

    Article  CAS  PubMed  Google Scholar 

  105. Sharma PP. Bone scintigraphy in breast cancer: added value of hybrid SPECT-CT and its impact on patient management. Nucl Med Commun. 2012;33(2):139–47.

    Article  PubMed  Google Scholar 

  106. Utsunomiya D, et al. Added value of SPECT/CT fusion in assessing suspected bone metastasis: comparison with scintigraphy alone and nonfused scintigraphy and CT. Radiology. 2006;238(1):264–71.

    Article  PubMed  Google Scholar 

  107. Palmedo HH. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  108. Uematsu T, et al. Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. AJR Am J Roentgenol. 2005;184(4):1266–73.

    Article  PubMed  Google Scholar 

  109. Fogelman I, et al. Positron emission tomography and bone metastases. Semin Nucl Med. 2005;35(2):135–42.

    Article  PubMed  Google Scholar 

  110. Even-Sapir E, Metser U, Flusser G, et al. Assessment of malignant skeletal disease: initial experience with F18-fluoride PET/CT and comparison between F18 fluoride PET and F18 fluoride PET/CT. J Nucl Med. 2004;45(2):272–8.

    PubMed  Google Scholar 

  111. Schirrmeister H, et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol. 1999;17(8):2381.

    Article  CAS  PubMed  Google Scholar 

  112. Withofs NN. 18F-fluoride PET/CT for assessing bone involvement in prostate and breast cancers. Nucl Med Commun. 2011;32(3):168–76.

    Article  PubMed  Google Scholar 

  113. Damle NA. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol. 2013;31(4):262–9.

    Article  PubMed  Google Scholar 

  114. Yoon S-H, et al. Usefulness of 18F-fluoride PET/CT in breast cancer patients with osteosclerotic bone metastases. Nucl Med Mol Imaging. 2013;47(1):27–35.

    Article  PubMed  Google Scholar 

  115. Even-Sapir E, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.

    PubMed  Google Scholar 

  116. Kjölhede H, et al. Combined 18F-fluorocholine and 18F-fluoride positron emission tomography/computed tomography imaging for staging of high-risk prostate cancer. BJU Int. 2012;110(10):1501–6.

    Article  PubMed  Google Scholar 

  117. Langsteger WW. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging. 2011;55(4):448–57.

    CAS  PubMed  Google Scholar 

  118. Hetzel M, et al. F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res. 2003;18(12):2206–14.

    Article  PubMed  Google Scholar 

  119. Sharma PP. 18F-Fluoride PET/CT for detection of bone metastasis in patients with renal cell carcinoma: a pilot study. Nucl Med Commun. 2014;35(12):1247–53.

    Article  CAS  PubMed  Google Scholar 

  120. Chakraborty DD. Comparison of 18F fluoride PET/CT and 99mTc-MDP bone scan in the detection of skeletal metastases in urinary bladder carcinoma. Clin Nucl Med. 2013;38(8):616–21.

    Article  PubMed  Google Scholar 

  121. Yen R-F. The diagnostic and prognostic effectiveness of F-18 sodium fluoride PET-CT in detecting bone metastases for hepatocellular carcinoma patients. Nucl Med Commun. 2010;31(7):637–45.

    CAS  PubMed  Google Scholar 

  122. 18F-fluoride PET/CT versus 99mTc-MDP scanning for detecting bone metastases: a randomized, multi-center trial to compare two bone imaging techniques. Available from: https://clinicaltrials.gov/ct2/show/NCT00882609

  123. 18F – sodium fluoride pet imaging as a replacement for bone scintigraphy. Available at: https://clinicaltrials.gov/ct2/show/NCT01930812

  124. Bastawrous S, et al. Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice. Radiographics. 2014;34(5):1295–316.

    Article  PubMed  Google Scholar 

  125. Grant FD, et al. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49(1):68–78.

    Article  PubMed  Google Scholar 

  126. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med. 2005;46(8):1356–67.

    PubMed  Google Scholar 

  127. Hahn S, et al. Comparison of FDG-PET/CT and bone scintigraphy for detection of bone metastases in breast cancer. Acta Radiol. 2011;52(9):1009–14.

    Article  PubMed  Google Scholar 

  128. Ohta MM. Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun. 2001;22(8):875–9.

    Article  CAS  PubMed  Google Scholar 

  129. Shie PP. Meta-analysis: comparison of F-18 Fluorodeoxyglucose-positron emission tomography and bone scintigraphy in the detection of bone metastases in patients with breast cancer. Clin Nucl Med. 2008;33(2):97–101.

    Article  PubMed  Google Scholar 

  130. Rong J, et al. Comparison of 18FDG PET-CT and bone scintigraphy for detection of bone metastases in breast cancer patients. A meta-analysis. Surg Oncol. 2013;22(2):86–91.

    Article  PubMed  Google Scholar 

  131. Liu TT. A meta-analysis of 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with breast cancer. Skeletal Radiol. 2011;40(5):523–31.

    Article  PubMed  Google Scholar 

  132. Cook GJ, et al. Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol. 1998;16(10):3375–9.

    Article  CAS  PubMed  Google Scholar 

  133. Cook GJ, Azad GK, Goh V. Imaging bone metastases in breast cancer: staging and response assessment. J Nucl Med. 2016;57 Suppl 1:27S–33S.

    Article  CAS  PubMed  Google Scholar 

  134. Abe KK. Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med. 2005;19(7):573–9.

    Article  PubMed  Google Scholar 

  135. Nakai T, et al. Pitfalls of FDG-PET for the diagnosis of osteoblastic bone metastases in patients with breast cancer. Eur J Nucl Med Mol Imaging. 2005;32(11):1253–8.

    Article  PubMed  Google Scholar 

  136. Morris PG, et al. Integrated positron emission tomography/computed tomography may render bone scintigraphy unnecessary to investigate suspected metastatic breast cancer. J Clin Oncol. 2010;28(19):3154–9.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Groheux D, et al. 18F-FDG PET/CT for staging and restaging of breast cancer. J Nucl Med. 2016;57 Suppl 1:17S–26.

    Article  CAS  PubMed  Google Scholar 

  138. van der Hoeven JJ, et al. 18F-2-fluoro-2-deoxy-d-glucose positron emission tomography in staging of locally advanced breast cancer. J Clin Oncol. 2004;22(7):1253–9.

    Article  PubMed  CAS  Google Scholar 

  139. Carkaci S, et al. Retrospective study of 18F-FDG PET/CT in the diagnosis of inflammatory breast cancer: preliminary data. J Nucl Med. 2009;50(2):231–8.

    Article  PubMed  Google Scholar 

  140. Alberini J-L, et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) imaging in the staging and prognosis of inflammatory breast cancer. Cancer. 2009;115(21):5038–47.

    Article  PubMed  Google Scholar 

  141. Walker GV, et al. Pretreatment staging positron emission tomography/computed tomography in patients with inflammatory breast cancer influences radiation treatment field designs. Int J Radiat Oncol Biol Phys. 2012;83(5):1381–6.

    Article  PubMed  Google Scholar 

  142. Cochet AA. 18F-FDG PET/CT provides powerful prognostic stratification in the primary staging of large breast cancer when compared with conventional explorations. Eur J Nucl Med Mol Imaging. 2014;41(3):428–37.

    Article  PubMed  Google Scholar 

  143. Groheux D, et al. Prognostic impact of 18FDG-PET-CT findings in clinical stage III and IIB breast cancer. J Natl Cancer Inst. 2012;104(24):1879–87.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Vazquez B, Rousseau D, Hurd TC. Surgical management of breast cancer. Semin Oncol. 2007;34(3):234–40.

    Article  PubMed  Google Scholar 

  145. Fisher B. From Halsted to prevention and beyond: advances in the management of breast cancer during the twentieth century. Eur J Cancer. 1999;35(14):1963–73.

    Article  CAS  PubMed  Google Scholar 

  146. Gervasoni Jr JE, Sbayi S, Cady B. Role of lymphadenectomy in surgical treatment of solid tumors: an update on the clinical data. Ann Surg Oncol. 2007;14(9):2443–62.

    Article  PubMed  Google Scholar 

  147. Lucci A, et al. Surgical complications associated with sentinel lymph node dissection (SLND) plus axillary lymph node dissection compared with SLND alone in the American College of Surgeons Oncology Group Trial Z0011. J Clin Oncol. 2007;25(24):3657–63.

    Article  PubMed  Google Scholar 

  148. Carlson RW, et al. NCCN task force report: adjuvant therapy for breast cancer. J Natl Compr Canc Netw. 2006;4 Suppl 1:S1–26.

    Google Scholar 

  149. Come SE, et al. Endocrine and targeted manipulation of breast cancer: summary statement for the Sixth Cambridge Conference. Cancer. 2008;112 Suppl 3:673–8.

    Article  PubMed  Google Scholar 

  150. Gralow JR. Optimizing the treatment of metastatic breast cancer. Breast Cancer Res Treat. 2005;89 Suppl 1:S9–15.

    Article  CAS  PubMed  Google Scholar 

  151. Perez EA, et al. Trastuzumab plus adjuvant chemotherapy for human epidermal growth factor receptor 2 – positive breast cancer: planned joint analysis of overall survival from NSABP B-31 and NCCTG N9831. J Clin Oncol. 2014;32(33):3744–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Moasser MM. Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene. 2007;26(46):6577–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Slamon DJ, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    Article  CAS  PubMed  Google Scholar 

  154. Clark O, et al. Targeted therapy in triple-negative metastatic breast cancer: a systematic review and meta-analysis. Core Evid. 2014;9:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Lord CJ, Tutt ANJ, Ashworth A. Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors. Annu Rev Med. 2015;66(1):455–70.

    Article  CAS  PubMed  Google Scholar 

  156. Baselga J, et al. Everolimus in postmenopausal hormone-receptor – positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.

    Article  CAS  PubMed  Google Scholar 

  157. Finn RS, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  158. Ma CX, et al. A phase II study of UCN-01 in combination with irinotecan in patients with metastatic triple negative breast cancer. Breast Cancer Res Treat. 2013;137(2):483–92.

    Article  CAS  PubMed  Google Scholar 

  159. Hu XC. Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2015;16(4):436–46.

    Article  CAS  PubMed  Google Scholar 

  160. Bellon JR, Katz A, Taghian A. Radiation therapy for breast cancer. Hematol Oncol Clin North Am. 2006;20(2):239–57. vii.

    Article  PubMed  Google Scholar 

  161. Ragaz J, et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med. 1997;337(14):956–62.

    Article  CAS  PubMed  Google Scholar 

  162. Feldman LD, et al. Pathological assessment of response to induction chemotherapy in breast cancer. Cancer Res. 1986;46:2578–81.

    CAS  PubMed  Google Scholar 

  163. McCready DR, et al. The prognostic significance of lymph node metastases after preoperative chemotherapy for locally advanced breast cancer. Arch Surg. 1989;124:21–5.

    Article  CAS  PubMed  Google Scholar 

  164. Wolmark N, et al. Preoperative chemotherapy in patients with operable breast cancer: nine-year results from National Surgical Adjuvant Breast and Bowel Project B-18. J Natl Cancer Inst Monogr. 2001;30:96–102.

    Article  Google Scholar 

  165. Eisenhauer EA, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  166. Wahl RL, et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol. 1993;11(11):2101–11.

    Article  CAS  PubMed  Google Scholar 

  167. Mankoff DA, Dunnwald LK. Changes in glucose metabolism and blood flow following chemotherapy for breast cancer. PET Clin. 2005;1:71–82.

    Article  Google Scholar 

  168. Avril N, Sassen S, Roylance R. Response to therapy in breast cancer. J Nucl Med. 2009;50 Suppl 1:55S–63.

    Article  CAS  PubMed  Google Scholar 

  169. Wang YY. Is 18F-FDG PET accurate to predict neoadjuvant therapy response in breast cancer? A meta-analysis. Breast Cancer Res Treat. 2012;131(2):357–69.

    Article  CAS  PubMed  Google Scholar 

  170. Specht JM, et al. Tumor metabolism and blood flow as assessed by positron emission tomography varies by tumor subtype in locally advanced breast cancer. Clin Cancer Res. 2010;16(10):2803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Groheux D, et al. HER2-overexpressing breast cancer: FDG uptake after two cycles of chemotherapy predicts the outcome of neoadjuvant treatment. Br J Cancer. 2013;109(5):1157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Humbert OO. HER2-positive breast cancer: 18F-FDG PET for early prediction of response to trastuzumab plus taxane-based neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging. 2014;41(8):1525–33.

    Article  CAS  PubMed  Google Scholar 

  173. Groheux D, et al. Triple-negative breast cancer: early assessment with 18F-FDG PET/CT during neoadjuvant chemotherapy identifies patients who are unlikely to achieve a pathologic complete response and are at a high risk of early relapse. J Nucl Med. 2012;53(2):249–54.

    Article  CAS  PubMed  Google Scholar 

  174. Humbert OO. Prognostic relevance at 5 years of the early monitoring of neoadjuvant chemotherapy using 18F-FDG PET in luminal HER2-negative breast cancer. Eur J Nucl Med Mol Imaging. 2014;41(3):416–27.

    Article  CAS  PubMed  Google Scholar 

  175. Groheux D, et al. Baseline tumor 18F-FDG uptake and modifications after 2 cycles of neoadjuvant chemotherapy are prognostic of outcome in ER+/HER2 − breast cancer. J Nucl Med. 2015;56(6):824–31.

    Article  CAS  PubMed  Google Scholar 

  176. Dunnwald LK, et al. PET tumor metabolism in locally advanced breast cancer patients undergoing neoadjuvant chemotherapy: value of static versus kinetic measures of fluorodeoxyglucose uptake. Clin Cancer Res. 2011;17(8):2400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Boellaard R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med. 2011;52 Suppl 2:93S–100.

    Article  PubMed  Google Scholar 

  178. Groheux D, et al. Early metabolic response to neoadjuvant treatment: FDG PET/CT criteria according to breast cancer subtype. Radiology. 2015;277(2):358–71.

    Article  PubMed  Google Scholar 

  179. Bassa P, et al. Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med. 1996;37:931–8.

    CAS  PubMed  Google Scholar 

  180. Burcombe RJ, et al. Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer. 2002;38(3):375–9.

    Article  CAS  PubMed  Google Scholar 

  181. Kim SJ, et al. Predictive value of [18F]FDG PET for pathological response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol. 2004;15(9):1352–7.

    Article  PubMed  Google Scholar 

  182. Emmering J, et al. Preoperative [18F]FDG-PET after chemotherapy in locally advanced breast cancer: prognostic value as compared with histopathology. Ann Oncol. 2008;19:1573–7.

    Article  CAS  PubMed  Google Scholar 

  183. Couturier O, et al. Sequential positron emission tomography using [18F]fluorodeoxyglucose for monitoring response to chemotherapy in metastatic breast cancer. Clin Cancer Res. 2006;12(21):6437–43.

    Article  CAS  PubMed  Google Scholar 

  184. Dose Schwarz J, et al. Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET. J Nucl Med. 2005;46(7):1144–50.

    PubMed  Google Scholar 

  185. Gennari A, et al. Role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin Breast Cancer. 2000;1(2):156–61. discussion 162–3.

    Article  CAS  PubMed  Google Scholar 

  186. Mortazavi-Jehanno N, et al. Assessment of response to endocrine therapy using FDG PET/CT in metastatic breast cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2011;39(3):450–60.

    Article  PubMed  CAS  Google Scholar 

  187. Lin NU, et al. Phase II study of lapatinib in combination with trastuzumab in patients with human epidermal growth factor receptor 2 – positive metastatic breast cancer: clinical outcomes and predictive value of early [18F]fluorodeoxyglucose positron emission tomography imaging (TBCRC 003). J Clin Oncol. 2015;33(24):2623–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Coleman RE, et al. Bone scan flare predicts successful systemic therapy for bone metastases. J Nucl Med. 1988;29(8):1354–9.

    CAS  PubMed  Google Scholar 

  189. Schneider JA, et al. Flare on bone scintigraphy following taxol chemotherapy for metastatic breast cancer. J Nucl Med. 1994;35(11):1748–52.

    CAS  PubMed  Google Scholar 

  190. Wade AA, et al. Flare response in 18F-fluoride ion PET bone scanning. Am J Roentgenol. 2006;186(6):1783–6.

    Article  Google Scholar 

  191. Cook GJ, Taylor B, Glendenning J, et al. Heterogeneity of treatment response in skeletal metastases from breast cancer in 18F-fluoride and 18F-FDG PET. Nucl Med Commun. 2015;36:515–16.

    Article  CAS  Google Scholar 

  192. Hillner BE, et al. 18F-fluoride PET used for treatment monitoring of systemic cancer therapy: results from the national oncologic PET registry. J Nucl Med. 2015;56(2):222–8.

    Article  PubMed  CAS  Google Scholar 

  193. Stafford SE, et al. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol. 2002;9(8):913–21.

    Article  PubMed  Google Scholar 

  194. Specht JM, et al. Serial 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) to monitor treatment of bone-dominant metastatic breast cancer predicts time to progression (TTP). Breast Cancer Res Treat. 2007;105(1):87–94.

    Article  PubMed  Google Scholar 

  195. Tateishi U, et al. Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT. Radiology. 2008;247(1):189–96.

    Article  PubMed  Google Scholar 

  196. Osborne CK, et al. The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer. 1980;46 Suppl 12:2884–8.

    Article  CAS  PubMed  Google Scholar 

  197. van Kruchten M, et al. PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol. 2013;14(11):e465–75.

    Article  PubMed  CAS  Google Scholar 

  198. Mankoff DA. How imaging can impact clinical trial design: molecular imaging as a biomarker for targeted cancer therapy. Cancer J (Sudbury, Mass). 2015;21(3):218–24.

    Article  CAS  Google Scholar 

  199. Katzenellenbogen JA, Welch MJ, Dehdashti F. The development of estrogen and progestin radiopharmaceuticals for imaging breast cancer. Anticancer Res. 1997;17:1573–6.

    CAS  PubMed  Google Scholar 

  200. Mintun MA, et al. Breast cancer: PET imaging of estrogen receptors. Radiology. 1988;169(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  201. Peterson LM, et al. Quantitative imaging of estrogen receptor expression of breast cancer with PET and 18F-fluoroestradiol. J Nucl Med. 2008;49:367–74. in press.

    Article  PubMed  Google Scholar 

  202. Fowler AM, et al. Imaging diagnostic and therapeutic targets: steroid receptors in breast cancer. J Nucl Med. 2016;57 Suppl 1:75S–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Clark AS. Using nuclear medicine imaging in clinical practice: update on PET to guide treatment of patients with metastatic breast cancer. Oncology (Williston Park). 2014;28(5):424–30.

    Google Scholar 

  204. Hammond MEH, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28(16):2784–95.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Chung GG, et al. Quantitative analysis of estrogen receptor heterogeneity in breast cancer. Lab Invest. 2007;87(7):662–9.

    Article  CAS  PubMed  Google Scholar 

  206. Amir E, et al. Prospective study evaluating the impact of tissue confirmation of metastatic disease in patients with breast cancer. J Clin Oncol. 2012;30(6):587–92.

    Article  PubMed  Google Scholar 

  207. Dehdashti F, et al. Assessment of progesterone receptors in breast carcinoma by PET with 21-18F-fluoro-16α,17α-[(R)-(1′-α-furylmethylidene)dioxy]-19-norpregn-4-Ene-3,20-dione. J Nucl Med. 2012;53(3):363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Keen JC. The biology of breast carcinoma. Cancer. 2003;97 Suppl 3:825–33.

    Article  PubMed  Google Scholar 

  209. Linden HM, Dehdashti F. Novel methods and tracers for breast cancer imaging. Semin Nucl Med. 2013;43(4):324–9.

    Article  PubMed  Google Scholar 

  210. Dijkers EC, et al. Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu ImmunoPET imaging. J Nucl Med. 2009;50(6):974–81.

    Article  CAS  PubMed  Google Scholar 

  211. Dijkers EC. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 2010;87(5):586–92.

    Article  CAS  PubMed  Google Scholar 

  212. Verma S, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Gebhart G, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann Oncol. 2016; 27(4):619–24.

    Google Scholar 

  214. Clark AS, DeMichele A, Mankoff D. HER2 imaging in the ZEPHIR study. Ann Oncol. 2016; 27(4):555–7.

    Google Scholar 

  215. Rousseau C, et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006;24(34):5366–72.

    Article  PubMed  Google Scholar 

  216. Schelling M, et al. Positron emission tomography using [18F]fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol. 2000;18:1689–95.

    Article  CAS  PubMed  Google Scholar 

  217. Smith I, et al. Positron emission tomography using [18F]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol. 2000;18:1676–88.

    Article  CAS  PubMed  Google Scholar 

  218. Migliaccio II. Cyclin-dependent kinase 4/6 inhibitors in breast cancer therapy. Curr Opin Oncol. 2014;26(6):568–75.

    Article  CAS  PubMed  Google Scholar 

  219. Kenny L, et al. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34(9):1339–47.

    Article  PubMed  Google Scholar 

  220. Kenny L. The use of novel PET tracers to image breast cancer biologic processes such as proliferation, DNA damage and repair, and angiogenesis. J Nucl Med. 2016;57 Suppl 1:89S–95.

    Article  CAS  PubMed  Google Scholar 

  221. Kostakoglu L, et al. A phase II study of 3′-deoxy-3′-18F-fluorothymidine PET in the assessment of early response of breast cancer to neoadjuvant chemotherapy: results from ACRIN 6688. J Nucl Med. 2015;56(11):1681–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Dehdashti F, et al. Assessment of cellular proliferation in tumors by PET using 18F-ISO-1. J Nucl Med. 2013;54(3):350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Shoghi KI, et al. Quantitative receptor-based imaging of tumor proliferation with the sigma-2 ligand [18F]ISO-1. PLoS One. 2013;8(9):e74188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Mankoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Lynch, M.C., Lee, J.H., Mankoff, D.A. (2016). Diagnostic Applications of Nuclear Medicine: Breast Cancer. In: Strauss, H., Mariani, G., Volterrani, D., Larson, S. (eds) Nuclear Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-26067-9_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26067-9_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26067-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diagnostic Applications of Nuclear Medicine: Breast Cancer
    Published:
    23 April 2022

    DOI: https://doi.org/10.1007/978-3-319-26067-9_12-2

  2. Original

    Diagnostic Applications of Nuclear Medicine: Breast Cancer
    Published:
    04 October 2016

    DOI: https://doi.org/10.1007/978-3-319-26067-9_12-1