Skip to main content

Secure Multi-party Computation Based Privacy Preserving Extreme Learning Machine Algorithm Over Vertically Distributed Data

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9490))

Included in the following conference series:

Abstract

Especially in the Big Data era, the usage of different classification methods is increasing day by day. The success of these classification methods depends on the effectiveness of learning methods. Extreme learning machine (ELM) classification algorithm is a relatively new learning method built on feed-forward neural-network. ELM classification algorithm is a simple and fast method that can create a model from high-dimensional data sets. Traditional ELM learning algorithm implicitly assumes complete access to whole data set. This is a major privacy concern in most of cases. Sharing of private data (i.e. medical records) is prevented because of security concerns. In this research, we propose an efficient and secure privacy-preserving learning algorithm for ELM classification over data that is vertically partitioned among several parties. The new learning method preserves the privacy on numerical attributes, builds a classification model without sharing private data without disclosing the data of each party to others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, J.R., Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial Intelligence Approach, vol. 2. Morgan Kaufmann, San Mateo (1986)

    MATH  Google Scholar 

  2. Ramakrishnan, R., Gehrke, J.: Database Management Systems. Osborne/McGraw-Hill, Berkeley (2000)

    MATH  Google Scholar 

  3. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(13), 489–501 (2006)

    Article  Google Scholar 

  4. Sweeney, L.: k-anonymity: A model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 42–93 (2007)

    Article  Google Scholar 

  6. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: IEEE 23rd International Conference on Data Engineering, 2007, ICDE 2007, pp. 106–115. IEEE (2007)

    Google Scholar 

  7. Ji, Z., Lipton, Z.C., Elkan, C.: Differential privacy and machine learning: a survey and review (2014). arXiv preprint arXiv:1412.7584

  8. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data mining. J. Priv. Confidentiality 1(1), 5 (2009)

    Google Scholar 

  9. Secretan, J., Georgiopoulos, M., Castro, J.: A privacy preserving probabilistic neural network for horizontally partitioned databases. In: Neural Networks, 2007, IJCNN 2007, pp. 1554–1559 (2007)

    Google Scholar 

  10. Aggarwal, C.C., Yu, P.S.: A condensation approach to privacy preserving data mining. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 183–199. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Samet, S., Miri, A.: Privacy-preserving back-propagation and extreme learning machine algorithms. Data Knowl. Eng. 79–80, 40–61 (2012)

    Article  Google Scholar 

  12. Oliveira, S.R., Zaiane, O.R.: Privacy preserving clustering by data transformation. J. Inf. Data Manag. 1(1), 37 (2010)

    Google Scholar 

  13. Guang, L., Ya-Dong, W., Xiao-Hong, S.: A privacy preserving neural network learning algorithm for horizontally partitioned databases. Inform. Technol. J. 9, 1–10 (2009)

    Article  Google Scholar 

  14. Yu, H., Jiang, X., Vaidya, J.: Privacy-preserving svm using nonlinear kernels on horizontally partitioned data. In: Proceedings of the 2006 ACM Symposium on Applied Computing, SAC 2006, pp. 603–610. ACM, New York (2006)

    Google Scholar 

  15. bin Huang, G., yu Zhu, Q., kheong Siew, C.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings International Joint Conference Neural Networks, pp. 985–990 (2006)

    Google Scholar 

  16. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)

    Article  Google Scholar 

  17. Huang, G.B., Chen, L.: Convex incremental extreme learning machine. Neurocomputing 70(1618), 3056–3062 (2007)

    Article  Google Scholar 

  18. Huang, G.B., Chen, L.: Enhanced random search based incremental extreme learning machine. Neurocomputing 71(1618), 3460–3468 (2008)

    Article  Google Scholar 

  19. Tang, J., Deng, C., Huang, G.B., Zhao, B.: Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53(3), 1174–1185 (2015)

    Article  Google Scholar 

  20. Huang, G.B., Li, M.B., Chen, L., Siew, C.K.: Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 71(46), 576–583 (2008)

    Article  Google Scholar 

  21. Yu, H., Vaidya, J., Jiang, X.: Privacy-preserving SVM classification on vertically partitioned data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 647–656. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Sweeney, L., Shamos, M.: Multiparty computation for randomly ordering players and making random selections. Technical report, Carnegie Mellon University (2004)

    Google Scholar 

  23. Quinlan, J.R.: Simplifying decision trees. Int. J. Man Mach. Stud. 27(3), 221–234 (1987)

    Article  Google Scholar 

  24. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  25. Smith, J.W., Everhart, J., Dickson, W., Knowler, W., Johannes, R.: Using the adap learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, American Medical Informatics Association, pp. 261–265 (1988)

    Google Scholar 

  26. West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., Zuzan, H., Olson, J.A., Marks, J.R., Nevins, J.R.: Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. 98(20), 11462–11467 (2001)

    Article  Google Scholar 

  27. UCI: Statlog (heart) data set (2015). https://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)

  28. Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar returns from the ionosphere using neural networks. Johns Hopkins APL Tech. Digest 10, 262–266 (1989)

    Google Scholar 

  29. Cambria, E., Huang, G.B., et al.: Extreme learning machines [trends controversies]. Intell. Syst. IEEE 28(6), 30–59 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhat Özgür Çatak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Çatak, F.Ö. (2015). Secure Multi-party Computation Based Privacy Preserving Extreme Learning Machine Algorithm Over Vertically Distributed Data. In: Arik, S., Huang, T., Lai, W., Liu, Q. (eds) Neural Information Processing. ICONIP 2015. Lecture Notes in Computer Science(), vol 9490. Springer, Cham. https://doi.org/10.1007/978-3-319-26535-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26535-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26534-6

  • Online ISBN: 978-3-319-26535-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics