Skip to main content

The Ore Minerals and Major Ore Deposits of the Rare Earths

  • Chapter
  • First Online:
The Rare Earth Elements

Part of the book series: SpringerBriefs in Earth Sciences ((BRIEFSEARTH))

Abstract

This chapter gives an overview of the major and minor ore minerals of the rare earths, and of the related major ore deposits. As most of the rare earths are mined in China, the impression may arise that ore deposits of these metals occur in few other places on Earth. However, nothing is less true. The extensive overview of the ore deposits of the rare earths in this chapter is especially meant to indicate that deposits occur in quite a variety of countries, and that the apparent dominance of China is economically (and politically) powered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bastnaesite is also spelled bastnäsite, or bastnasite. In this book, the more common spelling bastnaesite will be used.

  2. 2.

    Carbonatite is a rare igneous carbonate rock (almost invariably intrusive), consisting of more than 50 % carbonate minerals. Worldwide, only one example of extrusive rocks is known: the rocks and lavas of the (active) Ol Doinyo Lengai volcano, Tanzania.

  3. 3.

    The Molybdenum Corporation of America changed its name to Molycorp in 1974. The corporation was acquired by Union Oil in 1977, which in turn became part of Chevron Corporation in 2005. (Molycorp 2014; www.molycorp.com). In 2008, Chevron sold the Mountain Pass mine to the privately held Molycorp Minerals LLC.

  4. 4.

    Dolomite rock is defined as a carbonate rock, containing calcite <50 %, dolomite >50 %. (Visser 1980). The term dolostone has been coined to avoid confusion with the mineral dolomite, CaMg(CO3)2, but has not gained general acceptance.

  5. 5.

    https://www.lynascorp.com/Pages/home.aspx.

  6. 6.

    Plumbogummite is PbAl3(PO4)2(OH)5·H2O.

  7. 7.

    Aenigmatite is \( {\text{Na}}_{ 2} {\text{Fe}}^{ 2+ }_{ 5} {\text{TiSi}}_{ 6} {\text{O}}_{ 20} \).

  8. 8.

    Astrophyllite is K2Na(Fe, Mn)7Ti2Si8O26(OH)4.

  9. 9.

    Tinguaite is the dike equivalent of phonolite.

  10. 10.

    TREO = Total Rare Earth Oxide, HREO = Heavy Rare Earth Oxide.

  11. 11.

    Khibina is also spelled as Khibiny, or Khibini.

  12. 12.

    The name Lujavrite is derived from the Saami-word Lujávri, meaning (Lake) Lovozero.

  13. 13.

    Goyazite is: SrAl3(PO4)2(OH)5

    Florencite is: (Ce, La)Al3(PO4)2(OH)6

  14. 14.

    Pelagic red clay: red colored fine-grained sediment that accumulates as the result of the settling of particles to the floor of the open ocean, far from land. The color results from coatings of iron oxide and manganese oxide on the sediment particles (Source Wikipedia (2015a) Pelagic Red Clay). The word “pelagic” comes from the Greek, and means “open sea”.

  15. 15.

    Ridge faults are central faults from mid-oceanic ridges, which are huge submarine mountain chains.

  16. 16.

    Transform faults are also known as conservative plate boundaries, as they neither create nor destroy lithosphere. These faults have a relative motion which is predominantly horizontal. They tend to be approximately at right angles to mid-oceanic ridges.

References

  • Andreoli MAG, Smith CB, Watkeys M, Moore JM, Ashwal LD, Hart RJ (1994) The geology of the Steenkampskraal monazite deposit, South Africa: implications for REE-Th-Cu mineralization in charnockite-granulite terrains. Econ Geol 89:994–1016

    Article  Google Scholar 

  • Anthony JW, Bideaux RA, Bladh KW, Nichols MC (eds) Handbook of mineralogy, online version, Mineralogical Society of America. http://www.handbookofmineralogy.org/. Accessed Sept 2014

  • Arafura Resources (2014) http://www.arultd.com/our-projects/nolans/rare-earths-mix.html. Accessed Oct 2014

  • Arzamastsev A,Yakovenchuk V, Pakhomovsky Y, Ivanyuk G (2008) The Khibina and Lovozero alkaline massifs: geology and unique mineralization. IGC excursion No 47 (excursion guide)

    Google Scholar 

  • Avalon Rare Metals (2015a) http://www.avalonraremetals.com/_resources/factsheet/ProjectSheet.pdf. Accessed Aug 2015

  • Avalon Rare Metals (2015b) Nechalacho Rare Earth Elements (“REE”) Project (http://www.avalonraremetals.com/_resources/factsheet/ProjectSheet.pdf). Accessed Aug 2015

  • Avalon Rare Metals (2015c) Nechalacho project: resources and reserves. http://avalonraremetals.com/nechalacho/resources_reserves. Accessed Aug 2015

  • Baturin GN, Yushina IG (2007) Rare earth elements in phosphate-ferromanganese crusts on Pacific seamounts. Lithol Min Resour 42(2):101–117

    Article  Google Scholar 

  • Berzelius JJ (1824) Undersökning af några Mineralier. 1. Phosphorsyrad Ytterjord. Kongliga Svenska Vetenskaps-Akademiens Handlingar 2:334–338

    Google Scholar 

  • Berzelius JJ (1825) Account of two newly discovered mineral species. Edinb J Sci 3:327–332

    Google Scholar 

  • Blaxland A, Van Breemen O, Steenfelt A (1976) Age and origin of agpaitic magmatism at Ilímaussaq, South Greenland: Rb-Sr study. Lithos 9:31–38

    Article  Google Scholar 

  • Breithaupt (1829) Über den Monazit, eine neue Specie des Mineral Reichs. J für Chemie und Physik, 55:301–303

    Google Scholar 

  • Castor SB (2008) The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. Can Mineral 46:779–806

    Article  Google Scholar 

  • Cerny P, Trueman DL (1985) Polylithionite from the rare-metal deposits of the Blachford Lake alkaline complex, N.W.T, Canada. Am. Mineral 70:1127–1134

    Google Scholar 

  • Chao ECT, Back JM, Minkin JA, Tatsumoto M, Wang J, Conrad JE, McKee EH, Zonglin H, Qingrun M (1997) The sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China: a cornerstone example for giant polymetallic ore deposits of hydrothermal origin. USGS Bull. 2143, 65 p

    Google Scholar 

  • Cheng X, Huang Z, Liu C, Qi L, Li W, Guan T (2003) Geochemistry of carbonatites in Maoniuping REE deposit, Sichuan province, China. Sci China, Ser D. 46(3):246–256

    Article  Google Scholar 

  • de Baar HJW, Bacon MP, Brewer PG (1985) Rare earth elements in the Pacific and Atlantic Oceans. Geochim Cosmochim Acta 49:1943–1959

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1986a) Eudialyte-Eucolite. The rockforming minerals, volume 1B, disilicates and ringsilicates, 2nd edn. Longman Scientific and Technical, Harlow, pp 348–363

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1986b) Allanite. The rockforming minerals, volume 1B, disilicates and ringsilicates, 2nd edn. The Geological Society, Bath, United Kingdom, pp 151–179

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (2013) An introduction to the rock-forming minerals, 3rd edn. The Mineralogical Society, London, p 478 (Monazite), p 63, (Allanite)

    Google Scholar 

  • Desharnais G, Camus Y, Bisaillon B (2014) Resources for the Tantalus rare earth ionic clay project, Northern Madagascar. SGS Canada Inc., NI 43-101 Technical Report. 165 p

    Google Scholar 

  • Drew LJ, Qingrun M, Weijun S (1990) The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China. Lithos 26:43–65

    Article  Google Scholar 

  • Duraiswami RA, Shaikh TN (2014) Fluid-rock interaction in the Kangankunde Carbonatite Complex, Malawi: SEM based evidence for late stage pervasive hydrothermal mineralisation. Cent Eur J Geosci 6(4):476–491

    Google Scholar 

  • Ederfeld H, Greaves MJ (1982) The rare earth elements in seawater. Nature 296:214–219

    Article  Google Scholar 

  • Encyclopedia Brittanica http://www.britannica.com/EBchecked/topic/438414/Bayan-Obo. Accessed Sept 2014

  • Finch AA, Goodenough KM, Salmon HM, Andersen T (2001) The petrology and petrogenesis of the North Motzfeldt Centre, Gardar Province, South Greenland. Mineral Mag 65(6):759–774

    Article  Google Scholar 

  • Förster HJ (1998a) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part I: the monazite-(Ce)-brabantite solid solution series. Am Mineral 83:259–272

    Article  Google Scholar 

  • Förster HJ (1998b) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany. Part II: Xenotime Am Mineral 83:1302–1315

    Google Scholar 

  • Fitton JG, Upton BGJ (1987) Introduction to Alkaline Igneous rocks. In: Alkaline Igneous rocks. Geol Soc Spec Publ 30:ix–xiv

    Google Scholar 

  • Fong Sam Y (2011) The mineral industry of Vietnam, USGS 2011 minerals yearbook. 28.1–28.14

    Google Scholar 

  • GEUS (2011) Minex, greenland mineral exploration newsletter. 40:8 p

    Google Scholar 

  • Google Maps (2015) (https://maps.google.com)

  • Gratz R, Heinrich W (1997) Monazite-xenotime thermobarometry: experimental calibration of the miscibility gap in the binary system CePO4-YPO4. Am Mineral 82:772–780

    Google Scholar 

  • Greenland Minerals and Energy (http://www.ggg.gl/projects/specialty-metals-kvanefjeld). Accessed Oct 2014

  • Gupta CK, Krishnamurthy N (2005) Extractive metallurgy of the rare earths. CRC Press, Boca Raton 484 p

    Google Scholar 

  • Halpin KM (2010) The characteristics and origin of the Hoidas Lake REE deposit. M.Sc. Thesis, University of Saskatchewan, 257 p

    Google Scholar 

  • Handbook of Mineralogy (2001) Eudialyte, Mineral Data Publishing, version 1.2

    Google Scholar 

  • Harris C, Cressey G, Bell ID, Atkins FB, Beswetherick S (1982) An occurrence of rare-earth-rich eudialyte from Ascension Island, South Atlantic. Mineral Mag 46:421–425

    Article  Google Scholar 

  • Hewett DF (1954) History of discovery at Mountain Pass, California. In: Rare-earth mineral deposits of the Mountain Pass District, San Bernardino, County, California. USGS Prof paper 261: iii–vi

    Google Scholar 

  • Hisinger W (1838) Analyser af några svenska mineralier. 2.Basiskt Fluor-Cerium från Bastnäs. Kongl. Vetenskaps-Akademiens Förhandlingar 187–1891 (as Basiskfluor-cerium)

    Google Scholar 

  • Hoatson DM, Jaireth S, Miezitis Y (2011) The major rare-earth-element deposits of Australia: geological setting, exploration, and resources. Geosci Aust 204 p

    Google Scholar 

  • International Seabed Authority (ISA) https://www.isa.org.jm. Accessed July 2015

  • Jones I, Hancox PJ (2012) Steenkampskraal rare earth element project South Africa. Technical report and resource estimate. Great Western Minerals Group, Ltd. 145 p

    Google Scholar 

  • Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H (2011) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geosci 4:535–539

    Google Scholar 

  • Klaproth MH (1810) Chemische Untersuchung des rothen Granats aus Grönland, Beiträge zur chemischen Kenntniss der Mineralkörper, 5, Rottmann Berlin, pp 131–137

    Google Scholar 

  • Lottermoser BG (1990) Rare-earth element mineralisation within the Mount Weld carbonatite laterite. Western Australia Lithos 24:151–167

    Google Scholar 

  • Lynas Corporation (2013) Quaterly report for the period ending 31 Dec 2012

    Google Scholar 

  • McBirney AR (1993) Igneous petrology, 2nd edn. Jones and Bartlett Publishers, Boston, London, pp 446–450

    Google Scholar 

  • Miller RR, Heamen LM, Birkett TC (1997) U-Pb zircon age of the Strange Lake peralkaline complex: implications for Mesoproterozoic peralkaline magmatism in north-central Labrador. Precambrian Res. 81:67–82

    Article  Google Scholar 

  • Mindat.org: Bayan Obo (http://www.mindat.org/loc-720.html). Accessed Sept 2014; Monazite (http://www.mindat.org/min-2751.html). Accessed Aug 2014; Eudialyte (http://www.mindat.org/min-1420.html). Accessed Aug 2014; Bastnaesite (http://www.mindat.org/min-560.html ). Accessed Aug 2014

  • Mindat.org: Maoniuping (http://www.mindat.org/loc-73232.html). Accessed July 2015

  • Mkango Resources Ltd (2014) (http://www.mkango.ca/s/songwe.asp). Accessed Dec 2014

  • Molycorp (2014) (www.molycorp.com). Accessed Aug 2014

  • Ngwenya BT (1994) Hydrothermal rare earth mineralisation in carbonatites of the Tundulu complex, Malawi: processes at the fluid/rock interface. Geochim Cosmochim Acta 58(9):2061–2072

    Article  Google Scholar 

  • Pu G (1988) Discovery of an alkali-pegmatite carbonatite complex zone in Maoniuping, south-western Sichuan Province. Geol Rev 34(1):86–92 (In Chinese, with English Abstract)

    Google Scholar 

  • Olson JC, Shaw DR, Pray LC, Sharp WN (1954) Rare-earth mineral deposits of the Mountain Pass District, San Bernardino County, California. USGS Prof Paper 261, 75 p

    Google Scholar 

  • Orris GJ, Grauch RI (2002) Rare earth element mines, deposits, and occurrences. USGS open file report, 02–189, 174 p

    Google Scholar 

  • Qiao X, Gao L, Peng Y, Zhang Y (1997) Composite stratigraphy of the Sailinhudong group and ore-bearing Micrite Mounds in the Bayan Obo Deposits, Inner Mongolia, China. Acta Geol Sinica 71(4):357–369

    Google Scholar 

  • Quest Rare Minerals (2014) Misery Lake rare earth project. (http://www.questrareminerals.com/misery_lake.php). Accessed Nov 2014

  • Ribeiro Olivo G, Williams-Jones AE (1999) Hydrothermal REE-rich eudialyte from the Pilanesberg complex, South Africa. Can Mineral 37:653–663

    Google Scholar 

  • Snelling NJ (1965) Age determination of three African carbonatites. Nature 205:492

    Article  Google Scholar 

  • Sjöqvist ASL, Cornell DH, Andersen T, Erambert M, Ek M, Leijd M (2013) Three compositional varieties of rare-earth element ore: eudialyte-group minerals from the Norra Kärr Alkaline Complex, Southern Sweden. Minerals 3:94–120

    Google Scholar 

  • Sörensen H (1974) The alkaline rocks, 1st edn. Wiley, Hoboken, 634 p

    Google Scholar 

  • Sörensen H (1992) Agpaitic nepheline syenites: a potential source of rare elements. App Geochem 7:417–427

    Article  Google Scholar 

  • Sörensen H (1997) The agpaitic rocks—an overview. Mineral Mag 61:485–498

    Article  Google Scholar 

  • Sörensen H (ed) (2001) The llimaussaq alkaline complex, South Greenland: status of mineralogical research with new results. Geol Survey Greenland Bull 190:167 p

    Google Scholar 

  • Sørensen LL, Kalvig P (2011) The rare earth element potential in Greenland. Geolog Survey Denmark Greenland (GEUS) 12 p

    Google Scholar 

  • Steenfelt A (2012) Rare earth elements in Greenland: known and new targets identified and characterised by regional stream sediment data. Geochem: Expl Environ Anal 12:313–326

    Google Scholar 

  • Stoltz NB, Meyer FM (2012) Economic potential of rare earth elements in apatite of the Khibina Alkaline complex, Kola Peninsula, Russia. In: 4th International Geologica Belgica Meeting, 2012

    Google Scholar 

  • Streckeisen A (1967) Classification and nomenclature of igneous rocks. N Jb Miner Abh 107:144–240

    Google Scholar 

  • Streckeisen A (1980) Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks. Geol Rundschau 69:194–207

    Article  Google Scholar 

  • Talk Vietnam (2012) May 18, 2012 by Vietnamnews. http://tanbreez.com/en/project-overview/tanbreez-elements/?page=1

  • Tanbreez (2014) http://tanbreez.com/en/project-overview/tanbreez-%e2%80%93-what-is-it/. and http://tanbreez.com/en/project-overview/tanbreez-elements/?page=1 Accessed Oct 2014 and June 2015

  • Tasman Metals Ltd. (2014a) (http://www.tasmanmetals.com/s/OresMinerals.asp). Accessed Aug 2014

  • Tasman Metals Ltd. (2014b) (http://www.tasmanmetals.com/s/Norra-Karr.asp). Accessed Nov 2014

  • Törnebohm AE (1906) Katapleiit-syenit, en nyupptäckt varietet af nefelinsyenit i Sverige [in Swedish]. Swed Geolog Surv (SGU) Ser C 199:1–54

    Google Scholar 

  • Thomson T (1810) Experiments on allanite, a new mineral from Greenland. Trans Royal Soc Edinburgh 8:371–386

    Google Scholar 

  • Tukiainen T (2014) The Motzfeld of the Igaliko nepheline syenite complex, South Greenland—a major resource of REE elements. In: ERES2014, proceedings of the 1st European rare earth resources conference, Milos Greece, 04–07 Sept 2014:317–324

    Google Scholar 

  • Turner DC, Andersen LS, Punukollu SN, Sliwa A, Tembo F (1989) Igneous phosphate resources in Zambia. In: Notholt AJG, Sheldon RP, Davidson DF (eds.) Phosphate deposits of the world 2:247–257

    Google Scholar 

  • von Eckermann H (1968) New contributions to the interpretation of the genesis of the Norra Kärr alkaline body in Southern Sweden. Lithos 1(1):76–88

    Article  Google Scholar 

  • van Emden B, Thornber MR, Graham J, Lincoln FJ (1997) The incorporation of actinides in monazite and xenotime from placer deposits in Western Australia. Can Mineral 35:95–104

    Google Scholar 

  • Visser WA (1980) Geological nomenclature. Royal Geol Mining Soc Netherlands 539 p

    Google Scholar 

  • Wall F, Mariano AN (1996) Rare earth minerals in carbonatites—a discussion centred on the Kangankunde carbonatite, Malawi. In Jones AP, Wall F, Williams CT (eds) Rare earth minerals—chemistry, origin and ore deposits. The Mineralogical Society, Chapman and Hall, London, United Kingdom, Series 7:193–225

    Google Scholar 

  • Wang J, Tatsumoto M, Li X, Premo WR, Chao ET (1994) A precise 232Th-208Pb chronology of fine grained monazite: age of the Bayan Obo, REE-Fe-Nb ore deposit China. Geochim Cosmochim Acta 58(15):3155–3169

    Article  Google Scholar 

  • Wang D, Yang J, Yan S, Xu J, Chen Y, Pu G, Luo Y (2001) A special orogenic-type rare earth element deposit in Maoniuping, Sichuan, China: geology and geochemistry. Resour Geol 51(3):177–188

    Article  Google Scholar 

  • Watt GR (1995) High-thorium monazite-(Ce) formed during disequilibrium melting of metapelites under granulite-faciës conditions. Mineral Mag 59:735–743

    Article  Google Scholar 

  • Webmineral: Monazite (http://webmineral.com/data/Monazite-(Ce).shtml#.Vmqg4U2FOUk). Accessed Aug 2014; Xenotime (http://webmineral.com/data/Xenotime-(Y).shtml#.VmqgtU2FOUk). Accessed Aug 2014; Eudialyte (http://webmineral.com/data/Eudialyte.shtml#.VFc7NqNgWcw). Accessed Nov 2014

  • Wikipedia, Binnen-Mongolië (http://nl.wikipedia.org/wiki/Binnen-Mongoli%C3%AB). Accessed Aug 2014

  • Wikipedia (2015a) Pelagic Red Clay https://en.wikipedia.org/wiki/Pelagic_red_clay. Accessed June 2015

  • Wikipedia (2015b) Jiangxi (https://en.wikipedia.org/wiki/Jiangxi)

  • Wikipedia (2015c) Gunagxi Zhuang (https://en.wikipedia.org/wiki/Guangxi)

  • Wikipedia (2015d) Hunan (https://en.wikipedia.org/wiki/Hunan)

  • Wikipedia (2015e) Fujian (https://en.wikipedia.org/wiki/Fujian)

  • Wikipedia (2015f) Guangdong (https://en.wikipedia.org/wiki/Guangdong)

  • Willett GC, Duncan RK, Rankin RA (1989). Geology and economic evaluation of the Mount Weld carbonatite, Laverton, Western Australia. In: Kimberlites and related rocks. GSA Special Publication 14, Blackwell Scientific Publications: 1215–35

    Google Scholar 

  • Yager TR (2011) The mineral industry of Malawi. In: 2011 Minerals Yearbook. USGS: 27.1–27.4

    Google Scholar 

  • Yang X-M, Le Bas MJ (2004) Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis. Lithos 72:97–116

    Article  Google Scholar 

  • Yang XY, Sun WD, Zhang YX, Zheng Y-Z (2009) Geochemical constraints on the genesis of the Bayan Obo Fe–Nb–REE deposit in Inner Mongolia, China. Geochim Cosmochim Acta 73:1417–1435

    Article  Google Scholar 

  • Zaitsev AN, Williams CT, Jeffries TE, Strekopytov S, Moutte J, Ivashchenkova OV, Spratt J, Petrov SV, Wall F, Seltmann R, Borozdin AP (2014a) Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline province, Russia: Examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geol Rev 61:204–225

    Google Scholar 

  • Zaitsev AN, Wall F, Chakhmouradian AR (2014b) Rare earth element minerals in carbonatites of the Kola Alkaline Province (Northern Fennoscandia). In: Proceedings of ERES2014: 1st European rare earth resources conference, Milos, Greece, 04–07 Sept 2014:343–347

    Google Scholar 

  • Zhang P, Kejie T, Yang Z, Yang X, Song R (2002) Rare earths, niobium and tantalum minerals in Bayan Obo ore deposit and discussion on their genesis. J Rare Earths 20(2):81–86

    Google Scholar 

  • Zambezi P, Voncken JHL, Hale M, Touret JLR (1997) Bastnaesite-(Ce) at the Nkombwa Hill carbonatite complex, Isoka District, Northeast Zambia. Mineral Petrol 59:239–250

    Article  Google Scholar 

  • Zhi Li L, Yang X (2014) China’s rare earth ore deposits and beneficiation techniques. In: Proceedings of ERES2014: 1st European rare earth resources conference, Milos, 04–07 Sept 2014 pp 26–36

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. L. Voncken .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Voncken, J.H.L. (2016). The Ore Minerals and Major Ore Deposits of the Rare Earths. In: The Rare Earth Elements. SpringerBriefs in Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-26809-5_2

Download citation

Publish with us

Policies and ethics