Skip to main content

Morphophysiology and Biochemistry of Prosopis strombulifera Under Salinity. Are Halophytes Tolerant to All Salts?

  • Chapter
  • First Online:
Sabkha Ecosystems

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 48))

Abstract

Prosopis genus is an important member of semiarid, arid and saline environments around the world. This genus includes shrubs and trees that exhibit a high economic and ecological potential in different American regions. These plants are considered to be unique terrestrial species due to their combined ability to fix nitrogen and grow under high-salinity conditions. The South American halophyte, Prosopis strombulifera (Lam) Benth, is distributed from the Arizona desert (U.S.A.) to Patagonia (Argentina) and is especially abundant in the salinized areas of central Argentina. The soil of these areas is characterized by similar proportions of NaCl and Na2SO4. P. strombulifera species showed a halophytic response to NaCl surviving up to 1 M NaCl in in-vitro experiments, but in contrast, a strong growth inhibition at lower Na2SO4 concentrations was observed. These differential responses to the most abundant salts present in salinized soils of Argentina make this species an excellent model to study salt-tolerance mechanisms in halophytic plants. This chapter provides an overview of different salt tolerance mechanisms in the American halophyte Prosopis strombulifera, especially phytohormone pattern, oxidative responses and production of biomolecules. This halophyte may be considered as a new useful genetic source to improve crop salt tolerance and a promising plant as source of natural products for pharmaceutical industry.

Mariana Reginato and Analía Llanes contributed equally to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Anesini C, Perez C (1993) Screening of plants used in Argentine folk medicine for antimicrobial activity. J Ethnopharmacol 39:119–128

    Article  CAS  PubMed  Google Scholar 

  • Ariza Espinar L, Barboza GE, Bonzani NE, Cantero JJ, Filippa EM (2006) Flora medicinal de la provincia de Córdoba. Pteridófitas y antófitas silvestres o naturalizadas, 1st edn. Museo Botánico, Córdoba

    Google Scholar 

  • Ashraf M, Ahmad S (2000) Influence of sodium on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.). Field Crop Res 66:115–127

    Article  Google Scholar 

  • Ballhorn DJ, Kautz S, Jensen M, Schmitt S, Heil M, Hegeman AD (2011) Genetic and environmental interactions determine plant defences against herbivores. J Ecol 99:313–326

    Article  Google Scholar 

  • Bañuelos GS, Mead R, Hoffman GJ (1993) Accumulation of selenium in wild mustard irrigated with agricultural effluent. Agric Ecosyst Environ 43:119–126

    Article  Google Scholar 

  • Bessega C, Saidman BO, Vilardi JC (2005) Genetic relationships among American species of Prosopis (Leguminosae) based on enzyme markers. Genet Mol Biol 28:277–286

    Article  CAS  Google Scholar 

  • Bhargava A, Ahad A, Wang S, Mansfield SD, Haughn GW, Douglas CJ (2013) The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. Planta 237:1199–1211

    Article  CAS  PubMed  Google Scholar 

  • Bie Z, Tadashi I, Shinoara Y (2004) Effects of sodium sulfate and sodium bicarbonate on the growth, gas exchange and mineral composition of lettuce. Sci Hortic 99:215–224

    Article  CAS  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Burkart A (1976) A monograph of the genus Prosopis (Leguminosae subfam Mimosoideae). J Arnold Arboretum 57:219–249

    Google Scholar 

  • Burkart A, Simpson BB (1977) The genus Prosopis and annoted key to the species of the world. In: Simpson B (ed) Mesquite: its biology in two desert ecosystems. PA Dowden/Hutchinson and Ross, Stroudsburg, pp 201–215

    Google Scholar 

  • Calis I, Satana ME, Yürüker A (1997) Triterpene saponins from Cyclamen mirabile and their biological activities. J Nat Prod 60:315–318

    Article  CAS  PubMed  Google Scholar 

  • Cantero JJ, Cantero A, Cisneros JM (1996) La vegetación de los paisajes hidro-halomórficos del centro de Argentina. Ed. Fundación Universidad Nacional de Río Cuarto, Córdoba

    Google Scholar 

  • Catalán L, Balzarini M, Taleisnik E, Sereno R, Karlin U (1994) Effects of salinity on germination and seedling growth of Prosopis flexuosa (D.C.). For Ecol Manag 63:347–357

    Article  Google Scholar 

  • Catalano SA, Vilardi JC, Tosto D, Saidman BO (2008) Molecular phylogeny and diversification history of Prosopis (Fabaceae: Mimosoideae). Bot J Linn Soc 93:621–640

    Article  Google Scholar 

  • Chanwitheesuk A, Teerawutgulrag A, Rakariyatham N (2005) Screening of antioxidants activity and antioxidant compounds of some edible plants of Thailand. Food Chem 92:491–497

    Article  CAS  Google Scholar 

  • Chung K-T, Wong TY, Wei C-I, Huang Y-W, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38:421–464

    Article  CAS  PubMed  Google Scholar 

  • Cisneros JM, Cantero JJ, Cantero A (1999) Vegetation, soil hydrophysical properties, and grazing relationships in saline-sodic soils of Central Argentina. Can J Soil Sci 79:399–409

    Article  Google Scholar 

  • Darab K (1981) The role of sodium compounds in the formation and properties of salt affected soils. Agrokem Talajt Suppl 30:105–120

    CAS  Google Scholar 

  • DeLoach CJ (1985) Conflicts of interest over beneficial and undesirable aspects of mesquite (Prosopis spp.) in the United States as related to biological control. In: Delfosse ES (ed) Proceedings of the VI international symposium on biological control of weeds. Agriculture Canada, Ottawa, pp 301–340

    Google Scholar 

  • Devinar G, Llanes A, Masciarelli O, Luna V (2013) Abscisic acid and salicylic acid levels induced by different relative humidity and salinity conditions in the halophyte Prosopis strombulifera. Plant Growth Regul 70:247–256

    Article  CAS  Google Scholar 

  • Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulphur nutrition on plant glucosinolate content: physiology and molecular mechanisms. Plant Biol 9:573–581

    Article  CAS  PubMed  Google Scholar 

  • FAO (1997) Irrigation in the countries of the former Soviet Union in figures, FAO water report 15. FAO, Rome, p 236

    Google Scholar 

  • FAO (2008) FAO land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush/

  • Felker P (2007) Unusual physiological properties of the arid adapted tree legume Prosopis and their applications in developing countries. In: De la Barrera E, Smith W (eds) Perspectives in biophysical plant ecophysiology: a tribute to Park Nobel. Mildred E. Mathias Botanical Garden, University of California, Los Angeles, pp 1–41

    Google Scholar 

  • Felker P, Guevara JC (2003) Potential of commercial hardwood forestry plantations in arid lands, an economic analyses of Prosopis lumber production in Argentina and the United States. For Ecol Manag 186:271–286

    Article  Google Scholar 

  • Felker P, Lopez C, Soulier C, Ochoa J, Abdala R, Ewens M (2001) Genetic evaluation of Prosopis alba (algarrobo) in Argentina for cloning elite trees. Agrofor Syst 53:65–76

    Article  Google Scholar 

  • Ferreyra LI, Bessega C, Vilardi JC, Saidman BO (2007) Consistency of population genetics parameters estimated from isozyme and RAPDs dataset in species of genus Prosopis (Leguminosae, Mimosoideae). Genetica 131:217–230

    Article  CAS  PubMed  Google Scholar 

  • Flowers T, Flowers S (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78:15–24

    Article  Google Scholar 

  • Folliott PF, Thames JL (1983) Handbook on taxonomy of Prosopis in Mexico, Peru and Chile. FAO, Roma, p 31

    Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    Article  CAS  Google Scholar 

  • Gleadow RM, Woodrow IE (2002) Defense chemistry of cyanogenic Eucalyptus cladocalyx seedlings is affected by water supply. Tree Physiol 22:939–945

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamza BN (2010) Genetic variation within and among three invasive Prosopis juliflora (Leguminosae) populations in the River Nile State, Sudan. Int J Genet Mol Biol 2:92–100

    CAS  Google Scholar 

  • Hao Q, Zhou X, Sha A, Wang C, Zhou R, Chen S (2011) Identification of genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genomics 12:525–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hapon MB, Hapon MV, Persia FA, Pochettino A, Lucero GS (2014) Aqueous extract of Prosopis strombulifera (LAM) benth induces cytotoxic effects against tumor cell lines without systemic alterations in BALB/c mice. J Clin Toxicol 4:222

    Article  Google Scholar 

  • Hariadi Y, Marandon K, Tian Y, Jacobsen S, Shabala S (2011) Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot 62:185–193

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa P, Bressan R, Zhu J, Bohnert H (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Horvath E, Szalai G, Janda T (2007) Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul 26(3):290–300

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874

    Article  CAS  PubMed  Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist T, Goodwin S, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith D, Jenks M, Rhodes D, Hasegawa P, Bohnert H, Joly R, Bressan R, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal RM (2003) Leaf area and ion contents of wheat grown under NaCl and Na2SO4 salinity. Pak J Biol Sci 6:1512–1514

    Article  Google Scholar 

  • Iqbal K, Jin SG, Pfeifer G, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci 108:3642–3647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007) Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. Plants under salinity stress. Turk J Bot 31:245–251

    Google Scholar 

  • Juarez-Muñoz J, Carrillo-Castaneda G, Arreguin R, Rubluo A (2002) Inter-and intra-genetic variation of four wild populations of Prosopis using RAPD-PCR fingerprints. Biodivers Conserv 11(5):921–930

    Article  Google Scholar 

  • Kappel VD, Costa GM, Scola G (2008) Phenolic content and antioxidant and antimicrobial properties of fruits of Capsicum baccatum L. var. pendulum at different maturity stages. J Med Food 11:267–274

    Article  CAS  PubMed  Google Scholar 

  • Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP (2013) The phytohormones crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep 32:945–957

    Article  CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu W, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ksouri R, Smaoui A, Isoda H, Abdelly C (2012) Utilization of halophyte species as new sources of bioactive substances. J Arid Land Stud 22:41–44

    Google Scholar 

  • Landeras G, Alfonso M, Pasiecznik NM, Harris PJC, Ramirez L (2006) Identification of Prosopis juliflora and Prosopis pallida provenances using molecular markers. Biodivers Conserv 15:1829–1844

    Article  Google Scholar 

  • Lefsrud MG, Kopsell D, Kopsell DE, Curran-Celentano J (2006) Irradiance affects biomass, elemental concentrations and carotenoid pigments in kale and spinach grown in a controlled environment. Physiol Plant 127:624–631

    Article  CAS  Google Scholar 

  • Li J, Sima W, Ouyang B (2012) Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellins biosynthesis. J Exp Bot 63:6407–6420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llanes A, Bertazza G, Palacio G, Luna V (2013) Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biol 15:118–125

    Article  CAS  PubMed  Google Scholar 

  • Llanes A, Masciarelli O, Ordoñez R, Isla MI, Luna V (2014a) Differential growth responses to sodium salts involve different ABA catabolism and transport in the halophyte Prosopis strombulifera. Biol Plant 58:80–88

    Article  CAS  Google Scholar 

  • Llanes A, Masciarelli O, Luna V (2014b) Growth responses to sulfate and chloride are related to different phytohormone profiles in the halophyte Prosopis strombulifera. Emirates J Food Agric 26:1097–1113

    Google Scholar 

  • Manchanda HR, Sharma SK (1989) Tolerance of chloride and sulphate salinity in chickpea (Cicer arietinum). J Agric Sci (Cambridge) 113:407–410

    Article  Google Scholar 

  • Manivannan P, Jaleel CA, Sankar B, Kishorekumar A, Murali P, Somasundaram Panneerselvam R (2008) Mineral uptake and biochemical changes in Heliantus annus under treatment with different sodium salts. Colloids Surf B 62:58–63

    Article  CAS  Google Scholar 

  • Mao R, Fitzpatrock R, Liu X, Davies P (2002) Chemical properties of selected soils from the North China Plain. In: McVicar TR, Li R, Walker J, Fitzpatrick R, Changming L (eds) Regional water and soil assessment for managing sustainable agriculture in China and Australia, ACIAR monograph no 84. Australian Centre for International Agricultural Research, Canberra, pp 173–186

    Google Scholar 

  • Miller G, Susuki N, Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler E, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 2:443–462

    Article  Google Scholar 

  • Munns R (2007) Utilizing genetic resources to enhance productivity of salt-prone land. CAB Rev, Perspect Agric Vet Sci Nutr Nat Resour 2:1–11

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Naeem MA, Quereshi RH (2005) Rice growth and ionic composition under saline hydroponic conditions: II. Supplemented with Cl: SO4 2− ratios. Pak J Agric Sci 42:1–2

    Google Scholar 

  • Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at ripening stages, as affected by salinity. Food Chem 96:66–73

    Article  CAS  Google Scholar 

  • Owens S (2001) Salt of the earth. Genetic engineering may help to reclaim agricultural land lost due to salinization. EMBO Rep 2:877–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Pasiecznik NM, Felker P, Harris PJC, Harsh LN, Cruz G, Tewari JC, Cadoret K, Maldonado LJ (2001) The Prosopis juliflora-Prosopis pallida complex: a monograph. HIDRA, Coventry

    Google Scholar 

  • Pasiecznik NM, Harris PJC, Smith SJ (2004) Identifying tropical Prosopis species – a field guide. HDRA, Coventry

    Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    Article  CAS  PubMed  Google Scholar 

  • Pérez C, Anesini C (1994a) Antibacterial activity of alimentary plants against Staphylococcus aureus growth. Am J Chin Med 22:169–174

    Article  PubMed  Google Scholar 

  • Pérez C, Anesini C (1994b) In vitro antibacterial activity of Argentine folk medicinal plants against Salmonella typhi. J Ethnopharmacol 44:41–46

    Article  PubMed  Google Scholar 

  • Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees S (2009) Networking by small-molecules hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Podolak I, Janeczko Z, Galanty A, Michalik M, Trojanowska D (2007) A triterpene saponin from Lysimachia thyrsiflora L. Acta Pol Pharm 64:39–43

    CAS  PubMed  Google Scholar 

  • Qasim M, Gulzar S, Khan MA (2011) Halophytes as medicinal plants. In: Ozturk M, Mermut AR, Celik A (eds) Urbanisation, land use, land degradation and environment. Daya Publishing House, Turkey, p 331

    Google Scholar 

  • Quiroga EN, Sampietro AR, Vattuone MA (2001) Screening antifungal activities of selected medicinal plants. J Ethnopharmacol 74:89–96

    Article  CAS  PubMed  Google Scholar 

  • Ratera EL, Ratera MO (1980) Plantas de la flora argentina empleadas en medicina popular, 1st edn. Hemisferio Sur S.A, Buenos Aires

    Google Scholar 

  • Reginato M, Abdala G, Miersch O, Ruiz O, Moschetti E, Luna V (2012) Changes in the levels of jasmonates and free polyamines induced by Na2SO4 and NaCl in roots and leaves of the halophyte Prosopis strombulifera. Biol (Section Botany) 67:689–697

    CAS  Google Scholar 

  • Reginato M, Reinoso H, Llanes A, Luna V (2013) Stomatal abundance and distribution in Prosopis strombulifera plants growing under different iso-osmotic salt treatments. Am J Plant Sci 4:80–90

    Article  Google Scholar 

  • Reginato M, Sosa L, Llanes A, Hampp E, Vettorazzi N, Reinoso H, Luna V (2014a) Na2SO4 and NaCl determine different growth responses and ion accumulation in the halophytic legume Prosopis strombulifera. Plant Biol 16:97–106

    Article  CAS  PubMed  Google Scholar 

  • Reginato M, Castagna A, Furlán A, Castro S, Ranieri A, Luna V (2014b) Analysis of the oxidative damage in the halophyte Prosopis strombulifera salinized with NaCl and Na2SO4. Role of polyphenols as antioxidant protection. AoB Plants, 6 plu042; doi:10.1093/aobpla/plu042

    Google Scholar 

  • Reinoso H, Sosa L, Ramirez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot 82:618–628

    Article  Google Scholar 

  • Reinoso H, Sosa L, Reginato M, Luna V (2005) Histological alterations induced by sodium sulfate in the vegetative anatomy of Prosopis strombulifera (Lam.) Benth. World J Agric Sci 1:109–119

    Google Scholar 

  • Rogers J, Ken E (2000) The magnificent mesquite. The University of Texas Press, Austin, pp 15–34

    Google Scholar 

  • Roig F (2002) Flora medicinal mendocina: Las plantas medicinales y aromáticas de la provincia de Mendoza (Argentina), 1st edn, Serie manuales N° 33. EDIUNC, Mendoza

    Google Scholar 

  • Saragusti AC, Bustos PS, Pierosan L, Cabrera JL, Chiabrando GA (2012) Involvement of the L-arginine-nitric oxide pathway in theantinociception caused by fruits of Prosopis strombulifera (Lam.) Benth. J Ethnopharmacol 140:117–122

    Article  PubMed  Google Scholar 

  • Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27:101–114

    Article  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Selmar D, Kleinwächter M (2013) Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crop Prod 42:558–566

    Article  CAS  Google Scholar 

  • Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  • Shi D, Sheng Y (2005) Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot 54:8–21

    Article  CAS  Google Scholar 

  • Simic M, Jovanovich S (1994) Inactivation of oxygen radicals by dietary phenolic compounds in anticarcinogenesis. In: Food phytochemicals for cancer prevention II. American Chemical Society, Washington DC, pp 20–39

    Google Scholar 

  • Sokolenko V (1984) Water and salt regimes of soil: modelling and management. A. A Balkema, Rotterdam

    Google Scholar 

  • Sosa L, Llanes A, Reginato M, Reinoso H, Luna V (2005) Osmotic and specific ion effects on the germination of Prosopis strombulifera (Lam.). Benth Ann Bot 96:261–297

    Article  CAS  Google Scholar 

  • Tarchoune I, Sgherri C, Izzo R, Lachaal M, Ouerghi Z, Navari-Izzo F (2010) Antioxidative responses of Ocinum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiol Biochem 9:772–777

    Article  Google Scholar 

  • Toursarkissian M (1980) Plantas medicinales de la Argentina. Sus nombres botánicos, vulgares, usos y distribución geográfica, 1st edn. Hemisferio Sur SA, Buenos Aires

    Google Scholar 

  • Uehara T, Okushima Y, Mimura T, Tasaka M, Fukaki H (2008) Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana. Plant Cell Physiol 49:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Villagra P (2000) Ecology of the Prosopis woodlands from Argentina. Multequina 9:35–51

    Google Scholar 

  • Vysotskaya LB, Arkhipova TN, Timergalina LN, Dedov AV, Veselov SYU, Kudoyarova GR (2004) Effect of partial root excision on transpiration, root hydraulic conductance and leaf growth in wheat seedlings. Plant Physiol Biochem 42:251–255

    Article  CAS  PubMed  Google Scholar 

  • Yalpani N, Enyedi AJ, Leôn J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372–376

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Virginia Luna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reginato, M., Llanes, A., Devinar, G., Garello, F., Luna, M.V. (2016). Morphophysiology and Biochemistry of Prosopis strombulifera Under Salinity. Are Halophytes Tolerant to All Salts?. In: Khan, M., Boër, B., Ȫzturk, M., Clüsener-Godt, M., Gul, B., Breckle, SW. (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-319-27093-7_4

Download citation

Publish with us

Policies and ethics