Skip to main content

Purinergic Signalling in the Gut

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((ANS,volume 891))

Abstract

The article will begin with the discovery of purinergic inhibitory neuromuscular transmission in the 1960s/1970s, the proposal for purinergic cotransmission in 1976 and the recognition that sympathetic nerves release adenosine 5′-triphosphate (ATP), noradrenaline and neuropeptide Y, while non-adrenergic, non-cholinergic inhibitory nerve cotransmitters are ATP, nitric oxide and vasoactive intestinal polypeptide in variable proportions in different regions of the gut. Later, purinergic synaptic transmission in the myenteric and submucosal plexuses was established and purinergic receptors expressed by both glial and interstitial cells. The focus will then be on purinergic mechanosensory transduction involving release of ATP from mucosal epithelial cells during distension to activate P2X3 receptors on submucosal sensory nerve endings. The responses of low threshold fibres mediate enteric reflex activity via intrinsic sensory nerves, while high threshold fibres initiate pain via extrinsic sensory nerves. Finally, the involvement of purinergic signalling in an animal model of colitis will be presented, showing that during distension there is increased ATP release, increased P2X3 receptor expression on calcitonin gene-related peptide-labelled sensory neurons and increased sensory nerve activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antonioli L, Fornai M, Blandizzi C, Salvadorini C, Colucci R, Breschi MC, Del Taca M (2005) The inhibitory effects of adenosine on enteric neuromuscular activity are decreased in inflammed colonic tissues. Gastroenterology 128:A273

    Google Scholar 

  • Antonioli L, Fornai M, Colucci R, Ghisu N, Blandizzi C, Del Tacca M (2006) A2a receptors mediate inhibitory effects of adenosine on colonic motility in the presence of experimental colitis. Inflamm Bowel Dis 12:117–122

    Article  PubMed  Google Scholar 

  • Antonioli L, Fornai M, Colucci R, Ghisu N, Da SF, Natale G, Kastsiuchenka O, Duranti E, Virdis A, Vassalle C, La MC, Mugnaini L, Breschi MC, Blandizzi C, Del Taca M (2007) Inhibition of adenosine deaminase attenuates inflammation in experimental colitis. J Pharmacol Exp Ther 322:435–442

    Article  CAS  PubMed  Google Scholar 

  • Antonioli L, Fornai M, Colucci R, Awwad O, Ghisu N, Tuccori M, Da SF, La Motta C, Natale G, Duranti E, Virdis A, Blandizzi C (2010) The blockade of adenosine deaminase ameliorates chronic experimental colitis through the recruitment of adenosine A2A and A3 receptors. J Pharmacol Exp Ther 335:434–442

    Article  CAS  PubMed  Google Scholar 

  • Antonioli L, Fornai M, Colucci R, Awwad O, Ghisu N, Tuccori M, Del Tacca M, Blandizzi C (2011) Differential recruitment of high affinity A1 and A2A adenosine receptors in the control of colonic neuromuscular function in experimental colitis. Eur J Pharmacol 650:639–649

    Article  CAS  PubMed  Google Scholar 

  • Balestra B, Vicini R, Cremon C, Zecchi L, Dothel G, Vasina V, De GR, Paccapelo A, Pastoris O, Stanghellini V, Corinaldesi R, De Ponti F, Tonini M, Barbara G (2012) Colonic mucosal mediators from patients with irritable bowel syndrome excite enteric cholinergic motor neurons. Neurogastroenterol Motil 24:1118-e570

    Article  PubMed  CAS  Google Scholar 

  • Barajas-López C, Espinosa-Luna R, Gerzanich V (1994) ATP closes a potassium and opens a cationic conductance through different receptors in neurons of guinea pig submucous plexus. J Pharmacol Exp Ther 268:1397–1402

    PubMed  Google Scholar 

  • Barajas-López C, Huizinga JD, Collins SM, Gerzanich V, Espinosa-Luna R, Peres AL (1996) P2x-purinoceptors of myenteric neurones from the guinea-pig ileum and their unusual pharmacological properties. Br J Pharmacol 119:1541–1548

    Article  PubMed  PubMed Central  Google Scholar 

  • Barajas-López C, Espinosa-Luna R, Zhu Y (1998) Functional interactions between nicotinic and P2X channels in short-term cultures of guinea-pig submucosal neurons. J Physiol 513:671–683

    Article  PubMed  PubMed Central  Google Scholar 

  • Barajas-López C, Espinosa-Luna R, Christofi FL (2000) Changes in intracellular Ca2+ by activation of P2 receptors in submucosal neurons in short-term cultures. Eur J Pharmacol 409:243–257

    Article  PubMed  Google Scholar 

  • Barajas-López C, Montaño LM, Espinosa-Luna R (2002) Inhibitory interactions between 5-HT3 and P2X channels in submucosal neurons. Am J Physiol Gastrointest Liver Physiol 283:G1238–G1248

    Article  PubMed  Google Scholar 

  • Bertrand PP (2003) ATP and sensory transduction in the enteric nervous system. Neuroscientist 9:243–260

    Article  CAS  PubMed  Google Scholar 

  • Bertrand PP (2004) Bursts of recurrent excitation in the activation of intrinsic sensory neurons of the intestine. Neuroscience 128:51–63

    Article  CAS  PubMed  Google Scholar 

  • Bertrand PP, Bornstein JC (2002) ATP as a putative sensory mediator: activation of intrinsic sensory neurons of the myenteric plexus via P2X receptors. J Neurosci 22:4767–4775

    CAS  PubMed  Google Scholar 

  • Beyazit Y, Koklu S, Tas A, Purnak T, Sayilir A, Kurt M, Turhan T, Celik T, Suvak B, Torun S, Akbal E (2012) Serum adenosine deaminase activity as a predictor of disease severity in ulcerative colitis. J Crohns Colitis 6:102–107

    Article  PubMed  Google Scholar 

  • Bian XC, Bertrand PP, Bornstein JC (2000) Descending inhibitory reflexes involve P2X receptor-mediated transmission from interneurons to motor neurons in guinea-pig ileum. J Physiol 528:551–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian X, Ren J, DeVries M, Schnegelsberg B, Cockayne DA, Ford AP, Galligan JJ (2003) Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J Physiol 551:309–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornstein JC (2008) Purinergic mechanisms in the control of gastrointestinal motility. Purinergic Signal 4:197–212

    Article  CAS  PubMed  Google Scholar 

  • Bornstein JC, Costa M, Grider JR (2004) Enteric motor and interneuronal circuits controlling motility. Neurogastroenterol Motil 16(Suppl 1):34–38

    Article  PubMed  Google Scholar 

  • Bours MJ, Troost FJ, Brummer RJ, Bast A, Dagnelie PC (2007) Local effect of adenosine 5′-triphosphate on indomethacin-induced permeability changes in the human small intestine. Eur J Gastroenterol Hepatol 19:245–250

    Article  CAS  PubMed  Google Scholar 

  • Brierley SM, Carter R, Jones W III, Xu L, Robinson DR, Hicks GA, Gebhart GF, Blackshaw LA (2005) Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. J Physiol 567:267–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bülbring E, Tomita T (1967) Properties of the inhibitory potential of smooth muscle as observed in the response to field stimulation of the guinea-pig taenia coli. J Physiol 189:299–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnstock G (1969) Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol Rev 21:247–324

    CAS  PubMed  Google Scholar 

  • Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  • Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1:239–248

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (1993) Physiological and pathological roles of purines: an update. Drug Dev Res 28:195–206

    Article  CAS  Google Scholar 

  • Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 194:335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G (2001a) Purinergic signalling in gut. In: Abbracchio MP, Williams M (eds) Handbook of experimental pharmacology, vol 151/II. Purinergic and pyrimidinergic signalling II – cardiovascular, respiratory, immune, metabolic and gastrointestinal tract function. Springer, Berlin, pp 141–238

    Google Scholar 

  • Burnstock G (2001b) Purine-mediated signalling in pain and visceral perception. Trends Pharmacol Sci 22:182–188

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2004) A moment of excitement. Living history series. The discovery of non-adrenergic, non-cholinergic neurotransmission. Physiol News 56:7–9

    Google Scholar 

  • Burnstock G (2007a) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2007b) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2008a) The journey to establish purinergic signalling in the gut. Neurogastroenterol Motil 20:8–19

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2008b) Commentary. Purinergic receptors as future targets for treatment of functional GI disorders. Gut 57:1193–1194

    Article  PubMed  Google Scholar 

  • Burnstock G (2009) Purinergic mechanosensory transduction and visceral pain. Mol Pain 5:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burnstock G (2011) Purinergic signaling in the gastrointestinal tract. World J Gastrointest Pathophysiol 2:31–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Burnstock G (2012a) The Gaddum Lecture. Discovery of purinergic signalling, the initial resistance and current explosion of interest. Br J Pharmacol 167:238–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G (2012b) P2X receptors in the gut. WIREs Membr Transp Signaling 1:269–279

    Article  CAS  Google Scholar 

  • Burnstock G (2014) Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 10(1):3–50

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Lavin S (2002) Interstitial cells of Cajal and purinergic signalling. Auton Neurosci 97:68–72

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Straub RW (1958) A method for studying the effects of ions and drugs on the resting and action potentials in smooth muscle with external electrodes. J Physiol 140:156–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G, Verkhratsky A (2012) Purinergic signalling and the nervous system. Springer, Heidelberg/Berlin

    Book  Google Scholar 

  • Burnstock G, Campbell G, Bennett M, Holman ME (1963) The effects of drugs on the transmission of inhibition from autonomic nerves to the smooth muscle of the guinea pig taenia coli. Biochem Pharmacol 12:134–135

    Google Scholar 

  • Burnstock G, Campbell G, Bennett M, Holman ME (1964) Innervation of the guinea-pig taenia coli: are there intrinsic inhibitory nerves which are distinct from sympathetic nerves? Int J Neuropharmacol 3:163–166

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Campbell G, Rand MJ (1966) The inhibitory innervation of the taenia of the guinea-pig caecum. J Physiol 182:504–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G, Campbell G, Satchell D, Smythe A (1970) Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br J Pharmacol 40:668–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnstock G, Fredholm BB, North RA, Verkhratsky A (2010) The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 199:93–147

    Article  CAS  Google Scholar 

  • Castelucci P, Robbins HL, Poole DP, Furness JB (2002) The distribution of purine P2X2 receptors in the guinea-pig enteric nervous system. Histochem Cell Biol 117:415–422

    Article  CAS  PubMed  Google Scholar 

  • Cesaro A, Brest P, Hofman V, Hébuterne X, Wildman S, Ferrua B, Marchetti S, Doglio A, Vouret-Craviari V, Galland F, Naquet P, Mograbi B, Unwin R, Hofman P (2010) Amplification loop of the inflammatory process is induced by P2X7R activation in intestinal epithelial cells in response to neutrophil transepithelial migration. Am J Physiol Gastrointest Liver Physiol 299:G32–G42

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Redelman D, Ro S, Ward SM, Ördög T, Sanders KM (2007) Selective labeling and isolation of functional classes of interstitial cells of Cajal of human and murine small intestine. Am J Physiol Cell Physiol 292:C497–C507

    Article  CAS  PubMed  Google Scholar 

  • Christofi FL (2008) Purinergic receptors and gastrointestinal secretomotor function. Purinergic Signal 4:213–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christofi FL, Wood JD (1993) Endogenously released adenosine acts at A1 receptors to suppress slow excitatory transmission (slow EPSP) and enhance slow inhibitory transmission (slow IPSP) in the myenteric plexus of guinea-pig small intestine. Gastroenterology 104:A490

    Article  Google Scholar 

  • Clark SR, Costa M, Tonini M, Brookes SJ (1996) Purinergic transmission is involved in a descending excitatory reflex in the guinea-pig small intestine. Proc Aust Neurosci Soc 7:176

    Google Scholar 

  • Colgan SP, Fennimore B, Ehrentraut SF (2013) Adenosine and gastrointestinal inflammation. J Mol Med (Berl) 91:157–164

    Article  CAS  Google Scholar 

  • Damen R, Haugen M, Svejda B, Alaimo D, Brenna O, Pfragner R, Gustafsson BI, Kidd M (2013) The stimulatory adenosine receptor ADORA2B regulates serotonin (5-HT) synthesis and release in oxygen-depleted EC cells in inflammatory bowel disease. PLoS One 8, e62607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang K, Bielfeldt K, Lamb K, Gebhart GF (2005) Gastric ulcers evoke hyperexcitability and enhance P2X receptor function in rat gastric sensory neurons. J Neurophysiol 93:3112–3119

    Article  CAS  PubMed  Google Scholar 

  • de Campos NE, Marques-da-Silva C, Corrêa G, Castelo-Branco MT, de Souza HS, Coutinho-Silva R (2012) Characterizing the presence and sensitivity of the P2X7 receptor in different compartments of the gut. J Innate Immun 4:529–541

    Article  PubMed  CAS  Google Scholar 

  • De Man JG, De Winter BY, Seerden TC, De Schepper HU, Herman AG, Pelckmans PA (2003) Functional evidence that ATP or a related purine is an inhibitory NANC neurotransmitter in the mouse jejunum: study on the identity of P2X and P2Y purinoceptors involved. Br J Pharmacol 140:1108–1116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Decker DA, Galligan JJ (2010) Molecular mechanisms of cross-inhibition between nicotinic acetylcholine receptors and P2X receptors in myenteric neurons and HEK-293 cells. Neurogastroenterol Motil 22:901–908, e235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degagné É, Turgeon N, Moore-Gagné J, Asselin C, Gendron FP (2012) P2Y2 receptor expression is regulated by C/EBPβ during inflammation in intestinal epithelial cells. FEBS J 279:2957–2965

    Article  PubMed  CAS  Google Scholar 

  • Donnelly-Roberts D, McGaraughty S, Shieh CC, Honore P, Jarvis MF (2008) Painful purinergic receptors. J Pharmacol Exp Ther 324:409–415

    Article  CAS  PubMed  Google Scholar 

  • Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol 68:213–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubyak GR, El Moatassim C (1993) Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265:C577–C606

    CAS  PubMed  Google Scholar 

  • Eccles JC (1964) The Physiology of Synapses. Springer, Berlin, pp 1–316

    Book  Google Scholar 

  • El-Tayeb A, Michael S, Abdelrahman A, Behrenswerth A, Gollos S, Nieber K, Müller CE (2011) Development of polar adenosine A2A receptor agonists for inflammatory bowel disease: synergism with A2B antagonists. ACS Med Chem Lett 2:890–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrela AB, Abraham WR (2011) Adenosine in the inflamed gut: a Janus faced compound. Curr Med Chem 18:2791–2815

    Article  CAS  PubMed  Google Scholar 

  • Evans RJ, Surprenant A (1992) Vasoconstriction of guinea-pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATP. Br J Pharmacol 106:242–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Yu L, Zhang W, Zhao T, Yu Y, Gao J, Zou D, Ni X, Ma B, Burnstock G (2009) Estrogen altered visceromotor reflex and P2X3 mRNA expression in a rat model of colitis. Steroids 74:956–963

    Article  CAS  PubMed  Google Scholar 

  • Feldberg W, Hebb C (1948) The stimulating action of phosphate compounds on the perfused superior cervical ganglion of the cat. J Physiol 107:210–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furness JB, Morris JL, Gibbins IL, Costa M (1989) Chemical coding of neurons and plurichemical transmission. Annu Rev Pharmacol Toxicol 29:289–306

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Jones C, Nurgali K, Clerc N (2004a) Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog Neurobiol 72:143–164

    Article  CAS  PubMed  Google Scholar 

  • Furness JB, Robbins HL, Xiao J, Stebbing MJ, Nurgali K (2004b) Projections and chemistry of Dogiel type II neurons in the mouse colon. Cell Tissue Res 317:1–12

    Article  CAS  PubMed  Google Scholar 

  • Furuya S, Furuya K (2013) Roles of substance P and ATP in the subepithelial fibroblasts of rat intestinal villi. Int Rev Cell Mol Biol 304:133–189

    Article  CAS  PubMed  Google Scholar 

  • Furuzono S, Nakayama S, Imaizumi Y (2005) Purinergic modulation of pacemaker Ca2+ activity in interstitial cells of Cajal. Neuropharmacology 48:264–273

    Article  CAS  PubMed  Google Scholar 

  • Gade AR, Akbarali HI (2013) Electrophysiological characterization of purinergic receptors in mouse enteric neuron-glia culture. FASEB J 27:1093.24

    Google Scholar 

  • Gallego D, Vanden Berghe P, Farré R, Tack J, Jiménez M (2008) P2Y1 receptors mediate inhibitory neuromuscular transmission and enteric neuronal activation in small intestine. Neurogastroenterol Motil 20:159–168

    Article  CAS  PubMed  Google Scholar 

  • Gallego D, Gil V, Martínez-Cutillas M, Mañe N, Martín MT, Jiménez M (2012) Purinergic neuromuscular transmission is absent in the colon of P2Y1 knocked out mice. J Physiol 590:1943–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galligan JJ (2002) Pharmacology of synaptic transmission in the enteric nervous system. Curr Opin Pharmacol 2:623–629

    Article  CAS  PubMed  Google Scholar 

  • Galligan JJ (2004) Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome. Br J Pharmacol 141:1294–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galligan JJ, North RA (2004) Pharmacology and function of nicotinic acetylcholine and P2X receptors in the enteric nervous system. Neurogastroenterol Motil 16(Suppl 1):64–70

    Article  PubMed  Google Scholar 

  • Galligan JJ, LePard KJ, Schneider DA, Zhou X (2000) Multiple mechanisms of fast excitatory synaptic transmission in the enteric nervous system. J Auton Nerv Syst 81:97–103

    Article  CAS  PubMed  Google Scholar 

  • Gao N, Hu HZ, Zhu MX, Fang X, Liu S, Gao C, Wood JD (2006) The P2Y1 purinergic receptor expressed by enteric neurones in guinea-pig intestine. Neurogastroenterol Motil 18:316–323

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140

    Article  CAS  PubMed  Google Scholar 

  • Gever J, Cockayne DA, Dillon MP, Burnstock G, Ford APDW (2006) Pharmacology of P2X channels. Pflugers Arch 452:513–537

    Article  CAS  PubMed  Google Scholar 

  • Giaroni C, Knight GE, Ruan H-Z, Glass R, Bardini M, Lecchini S, Frigo G, Burnstock G (2002) P2 receptors in the murine gastrointestinal tract. Neuropharmacology 43:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Giaroni C, Knight GE, Zanetti E, Chiaravalli AM, Lecchini S, Frigo G, Burnstock G (2006) Postnatal development of P2 receptors in the murine gastrointestinal tract. Neuropharmacology 50:690–704

    Article  CAS  PubMed  Google Scholar 

  • Glushakov AV, Melishchuk AI, Skok VI (1996) ATP-induced currents in submucous plexus neurons of the guinea-pig small intestine. Neurophysiology 28:77–85

    Article  Google Scholar 

  • Grbic DM, Degagné E, Langlois C, Dupuis AA, Gendron FP (2008) Intestinal inflammation increases the expression of the P2Y6 receptor on epithelial cells and the release of CXC chemokine ligand 8 by UDP. J Immunol 180:2659–2668

    Article  CAS  PubMed  Google Scholar 

  • Grbic DM, Degagné É, Larriveé JF, Bilodeau MS, Vinette V, Arguin G, Stankova J, Gendron FP (2012) P2Y6 receptor contributes to neutrophil recruitment to inflamed intestinal mucosa by increasing CXC chemokine ligand 8 expression in an AP-1-dependent manner in epithelial cells. Inflamm Bowel Dis 18:1456–1469

    Article  PubMed  Google Scholar 

  • Gröschel-Stewart U, Bardini M, Robson T, Burnstock G (1999) P2X receptors in the rat duodenal villus. Cell Tissue Res 297:111–117

    Article  PubMed  Google Scholar 

  • Gulbransen BD, Sharkey KA (2009) Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology 136:1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Gulbransen BD, Bains JS, Sharkey KA (2010) Enteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon. J Neurosci 30:6801–6809

    Article  CAS  PubMed  Google Scholar 

  • Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, Muruve DA, McKay DM, Beck PL, Mawe GM, Thompson RJ, Sharkey KA (2012) Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med 18:600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman J, Yu JG, Suntres Z, Bozarov A, Cooke H, Javed N, Auer H, Palatini J, Hassanain HH, Cardounel AJ, Javed A, Grants I, Wunderlich JE, Christofi FL (2006) ADOA3R as a therapeutic target in experimental colitis: proof by validated high-density oligonucleotide microarray analysis. Inflamm Bowel Dis 12:766–789

    Article  PubMed  Google Scholar 

  • Holton P (1959) The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol 145:494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzer P (2004) Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets. Expert Opin Ther Targets 8:107–123

    Article  CAS  PubMed  Google Scholar 

  • Holzer P (2006) Efferent-like roles of afferent neurons in the gut: blood flow regulation and tissue protection. Auton Neurosci 125:70–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoyle CHV (1992) Transmission: purines. In: Burnstock G, Hoyle CHV (eds) The autonomic nervous system. Autonomic neuroeffector mechanisms. Harwood Academic Publishers, Chur, pp 367–407

    Google Scholar 

  • Hoyle CHV, Burnstock G (1989) Neuromuscular transmission in the gastrointestinal tract. In: Wood JD (ed) Handbook of physiology, Section 6: The gastrointestinal system, Vol. I: Motility and circulation. American Physiological Society, Bethesda, MD, pp 435–464

    Google Scholar 

  • Hu HZ, Gao N, Zhu MX, Liu S, Ren J, Gao C, Xia Y, Wood JD (2003) Slow excitatory synaptic transmission mediated by P2Y1 receptors in the guinea-pig enteric nervous system. J Physiol 550:493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivancheva C, Rahamimoff R, Radomirov R (2001) Apamin-sensitive nitric oxide- and ATP-mediated motor effects on the guinea pig small intestine. Gen Physiol Biophys 20:97–108

    CAS  PubMed  Google Scholar 

  • Johnson CR, Hourani SMO (1994) Contractile effects of uridine 5′-triphosphate in the rat duodenum. Br J Pharmacol 113:1191–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson CR, Charlton SJ, Hourani SMO (1996) Responses of the longitudinal muscle and the muscularis mucosae of the rat duodenum to adenine and uracil nucleotides. Br J Pharmacol 117:823–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamiji T, Morita K, Katayama Y (1994) ATP regulates synaptic transmission by pre- and postsynaptic mechanisms in guinea-pig myenteric neurons. Neuroscience 59:165–174

    Article  CAS  PubMed  Google Scholar 

  • Karanjia R, García-Hernandez LM, Miranda-Morales M, Somani N, Espinosa-Luna R, Montaño LM, Barajas-López C (2006) Cross-inhibitory interactions between GABAA and P2X channels in myenteric neurones. Eur J Neurosci 23:3259–3268

    Article  PubMed  Google Scholar 

  • Katayama Y, Morita K (1989) Adenosine 5′-triphosphate modulates membrane potassium conductance in guinea-pig myenteric neurones. J Physiol 408:373–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating C, Pelegrin P, Martinez CM, Grundy D (2011) P2X7 receptor-dependent intestinal afferent hypersensitivity in a mouse model of postinfectious irritable bowel syndrome. J Immunol 187:1467–1474

    Article  CAS  PubMed  Google Scholar 

  • Kimball BC, Mulholland MW (1995) Neuroligands evoke calcium signaling in cultured myenteric neurons. Surgery 118:162–169

    Article  CAS  PubMed  Google Scholar 

  • Kimball BC, Mulholland MW (1996) Enteric glia exhibit P2U receptors that increase cytosolic calcium by a phospholipase C-dependent mechanism. J Neurochem 66:604–612

    Article  CAS  PubMed  Google Scholar 

  • King BF, Townsend-Nicholson A (2008) Involvement of P2Y1 and P2Y11 purinoceptors in parasympathetic inhibition of colonic smooth muscle. J Pharmacol Exp Ther 324:1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Kirkup AJ, Brunsden AM, Grundy D (2001) Receptors and transmission in the brain-gut axis: potential for novel therapies. I. Receptors on visceral afferents. Am J Physiol Gastrointest Liver Physiol 280:G787–G794

    CAS  PubMed  Google Scholar 

  • Kolachala V, Asamoah V, Wang L, Obertone TS, Ziegler TR, Merlin D, Sitaraman SV (2005) TNF-α upregulates adenosine 2b (A2b) receptor expression and signaling in intestinal epithelial cells: a basis for A2bR overexpression in colitis. Cell Mol Life Sci 62:2647–2657

    Article  CAS  PubMed  Google Scholar 

  • Kolachala VL, Ruble BK, Vijay-Kumar M, Wang L, Mwangi S, Figler HE, Figler RA, Srinivasan S, Gewirtz AT, Linden J, Merlin D, Sitaraman SV (2008a) Blockade of adenosine A2B receptors ameliorates murine colitis. Br J Pharmacol 155:127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolachala VL, Vijay-Kumar M, Dalmasso G, Yang D, Linden J, Wang L, Gewirtz A, Ravid K, Merlin D, Sitaraman SV (2008b) A2B adenosine receptor gene deletion attenuates murine colitis. Gastroenterology 135:861–870

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolachala VL, Bajaj R, Chalasani M, Sitaraman SV (2008c) Purinergic receptors in gastrointestinal inflammation. Am J Physiol Gastrointest Liver Physiol 294:G401–G410

    Article  CAS  PubMed  Google Scholar 

  • Künzli BM, Berberat PO, Dwyer K, Deaglio S, Csizmadia E, Cowan P, d’Apice A, Moore G, Enjyoji K, Friess H, Robson SC (2011) Variable impact of CD39 in experimental murine colitis. Dig Dis Sci 56:1393–1403

    Article  PubMed  CAS  Google Scholar 

  • Kurahashi M, Zheng H, Dwyer L, Ward SM, Don KS, Sanders KM (2011) A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J Physiol 589:697–710

    Article  CAS  PubMed  Google Scholar 

  • Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi T, Iba H, Tsutsui H, Sato S, Nakajima S, Iijima H, Kubo M, Kunisawa J, Kiyono H (2012) Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 3:1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kusu T, Kayama H, Kinoshita M, Jeon SG, Ueda Y, Goto Y, Okumura R, Saiga H, Kurakawa T, Ikeda K, Maeda Y, Nishimura J, Arima Y, Atarashi K, Honda K, Murakami M, Kunisawa J, Kiyono H, Okumura M, Yamamoto M, Takeda K (2013) Ecto-nucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine. J Immunol 190:774–783

    Article  CAS  PubMed  Google Scholar 

  • Langley JN (1898) On inhibitory fibres in the vagus to the end of the oesophagus and stomach. J Physiol 23:407–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HK, Ro S, Keef KD, Kim YH, Kim HW, Horowitz B, Sanders KM (2005) Differential expression of P2X-purinoceptor subtypes in circular and longitudinal muscle of canine colon. Neurogastroenterol Motil 17:575–584

    Article  CAS  PubMed  Google Scholar 

  • LePard KJ, Messori E, Galligan JJ (1997) Purinergic fast excitatory postsynaptic potentials in myenteric neurons of guinea pig: distribution and pharmacology. Gastroenterology 113:1522–1534

    Article  CAS  PubMed  Google Scholar 

  • Liñán-Rico A, Wunderlich JE, Grants IS, Frankel WL, Xue J, Williams KC, Harzman AE, Enneking JT, Cooke HJ, Christofi FL (2013) Purinergic autocrine regulation of mechanosensitivity and serotonin release in a human EC model: ATP-gated P2X3 channels in EC are downregulated in ulcerative colitis. Inflamm Bowel Dis 19:2366–2379

    Article  PubMed  PubMed Central  Google Scholar 

  • Lomax AE, O’Reilly M, Neshat S, Vanner SJ (2007) Sympathetic vasoconstrictor regulation of mouse colonic submucosal arterioles is altered in experimental colitis. J Physiol 583:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabley J, Soriano F, Pacher P, Hasko G, Marton A, Wallace R, Salzman A, Szabo C (2003) The adenosine A3 receptor agonist, N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide, is protective in two murine models of colitis. Eur J Pharmacol 466:323–329

    Article  CAS  PubMed  Google Scholar 

  • Maor I, Rainis T, Lanir A, Lavy A (2011) Adenosine deaminase activity in patients with Crohn’s disease: distinction between active and nonactive disease. Eur J Gastroenterol Hepatol 23:598–602

    Article  CAS  PubMed  Google Scholar 

  • Martinson J (1965) Studies on the efferent vagal control of the stomach. Acta Physiol Scand Suppl 255:1–24

    CAS  PubMed  Google Scholar 

  • Martinson J, Muren A (1963) Excitatory and inhibitory effects of vagus stimulation on gastric motility in the cat. Acta Physiol Scand 57:309–316

    Article  Google Scholar 

  • McSwiney BA, Robson JH (1929) The response of smooth muscle to stimulation of the vagus nerve. J Physiol 68:124–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael S, Warstat C, Michel F, Yan L, Müller CE, Nieber K (2010) Adenosine A2A agonist and A2B antagonist mediate an inhibition of inflammation-induced contractile disturbance of a rat gastrointestinal preparation. Purinergic Signal 6:117–124

    Article  CAS  PubMed  Google Scholar 

  • Mihara S, Katayama Y, Nishi S (1985) Slow postsynaptic potentials in neurones of the submucous plexus of guinea pig caecum and their mimickry by noradrenaline and various peptides. Neuroscience 16:1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Misawa R, Girotti PA, Mizuno MS, Liberti EA, Furness JB, Castelucci P (2010) Effects of protein deprivation and re-feeding on P2X2 receptors in enteric neurons. World J Gastroenterol 16:3651–3663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monro RL, Bertrand PP, Bornstein JC (2004) ATP participates in three excitatory postsynaptic potentials in the submucous plexus of the guinea pig ileum. J Physiol 556:571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moody CJ, Burnstock G (1982) Evidence for the presence of P1-purinoceptors on cholinergic nerve terminals in the guinea-pig ileum. Eur J Pharmacol 77:1–9

    Article  CAS  PubMed  Google Scholar 

  • Naganuma M, Wiznerowicz EB, Lappas CM, Linden J, Worthington MT, Ernst PB (2006) Cutting edge: critical role for A2A adenosine receptors in the T cell-mediated regulation of colitis. J Immunol 177:2765–2769

    Article  CAS  PubMed  Google Scholar 

  • Neshat S, DeVries M, Barajas-Espinosa AR, Skeith L, Chisholm SP, Lomax AE (2009) Loss of purinergic vascular regulation in the colon during colitis is associated with upregulation of CD39. Am J Physiol Gastrointest Liver Physiol 296:G399–G405

    Article  CAS  PubMed  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Article  CAS  PubMed  Google Scholar 

  • Odashima M, Bamias G, Rivera-Nieves J, Linden J, Nast CC, Moskaluk CA, Marini M, Sugawara K, Kozaiwa K, Otaka M, Watanabe S, Cominelli F (2005) Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129:26–33

    Article  CAS  PubMed  Google Scholar 

  • Ohta T, Kubota A, Murakami M, Otsuguro K, Ito S (2005) P2X2 receptors are essential for [Ca2+]i increases in response to ATP in cultured rat myenteric neurons. Am J Physiol Gastrointest Liver Physiol 289:G935–G948

    Article  CAS  PubMed  Google Scholar 

  • Olsson RA, Pearson JD (1990) Cardiovascular purinoceptors. Physiol Rev 70:761–845

    CAS  PubMed  Google Scholar 

  • Pacaud P, Feolde E, Frelin C, Loirand G (1996) Characterization of the P2Y-purinoceptor involved in the ATP-induced rise in cytosolic Ca2+ concentration in rat ileal myocytes. Br J Pharmacol 118:2213–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page AJ, O’Donnell TA, Blackshaw LA (2000) P2X purinoceptor-induced sensitization of ferret vagal mechanoreceptors in oesophageal inflammation. J Physiol (Lond) 523:403–411

    Article  CAS  PubMed Central  Google Scholar 

  • Paton WD (1958) Central and synaptic transmission in the nervous system; pharmacological aspects. Annu Rev Physiol 20:431–470

    Article  CAS  PubMed  Google Scholar 

  • Paton WD, Vane JR (1963) Analysis of the responses of the isolated stomach to electrical stimulation and to drugs. J Physiol 165:10–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole DP, Castelucci P, Robbins HL, Chiocchetti R, Furness JB (2002) The distribution of P2X3 purine receptor subunits in the guinea pig enteric nervous system. Auton Neurosci 101:39–47

    Article  CAS  PubMed  Google Scholar 

  • Rahimian R, Fakhfouri G, Daneshmand A, Mohammadi H, Bahremand A, Rasouli MR, Mousavizadeh K, Dehpour AR (2010) Adenosine A2A receptors and uric acid mediate protective effects of inosine against TNBS-induced colitis in rats. Eur J Pharmacol 649:376–381

    Article  CAS  PubMed  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  • Ren J, Bertrand PP (2008) Purinergic receptors and synaptic transmission in enteric neurons. Purinergic Signal 4:255–266

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Galligan JJ (2005) Dynamics of fast synaptic excitation during trains of stimulation in myenteric neurons of guinea-pig ileum. Auton Neurosci 117:67–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren J, Galligan JJ (2007) A novel calcium-sensitive potassium conductance is coupled to P2X3 subunit containing receptors in myenteric neurons of guinea pig ileum. Neurogastroenterol Motil 19:912–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Bian X, DeVries M, Schnegelsberg B, Cockayne DA, Ford AP, Galligan JJ (2003) P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J Physiol 552:809–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren T, Grants I, Alhaj M, McKiernan M, Jacobson M, Hassanain HH, Frankel W, Wunderlich J, Christofi FL (2011) Impact of disrupting adenosine A3 receptors (A3 -/- AR) on colonic motility or progression of colitis in the mouse. Inflamm Bowel Dis 17:1698–1713

    Article  PubMed  Google Scholar 

  • Roberts JA, Durnin L, Sharkey KA, Mutafova-Yambolieva VN, Mawe GM (2013) Oxidative stress disrupts purinergic neuromuscular transmission in the inflamed colon. J Physiol 591:3725–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong W, Keating C, Sun B, Dong L, Grundy D (2009) Purinergic contribution to small intestinal afferent hypersensitivity in a murine model of postinfectious bowel disease. Neurogastroenterol Motil 21:665–671, e32

    Article  CAS  PubMed  Google Scholar 

  • Ruan H-Z, Burnstock G (2005) The distribution of P2X5 purinergic receptors in the enteric nervous system. Cell Tissue Res 319:191–200

    Article  CAS  PubMed  Google Scholar 

  • Rybaczyk L, Rozmiarek A, Circle K, Grants I, Needleman B, Wunderlich JE, Huang K, Christofi FL (2009) New bioinformatics approach to analyze gene expressions and signaling pathways reveals unique purine gene dysregulation profiles that distinguish between CD and UC. Inflamm Bowel Dis 15:971–984

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai K, Akima M, Matsushita H (1979) Analysis of the contractile responses of the ileal segment of the isolated blood-perfused small intestine of rats to adenosine triphosphate and related compounds. Eur J Pharmacol 58:157–162

    Article  CAS  PubMed  Google Scholar 

  • Sarosi GA, Barnhart DC, Turner DJ, Mulholland MW (1998) Capacitative Ca2+ entry in enteric glia induced by thapsigargin and extracellular ATP. Am J Physiol 275:G550–G555

    CAS  PubMed  Google Scholar 

  • Siegmund B, Rieder F, Albrich S, Wolf K, Bidlingmaier C, Firestein GS, Boyle D, Lehr HA, Loher F, Hartmann G, Endres S, Eigler A (2001) Adenosine kinase inhibitor GP515 improves experimental colitis in mice. J Pharmacol Exp Ther 296:99–105

    CAS  PubMed  Google Scholar 

  • Sneddon JD, Smythe A, Satchell D, Burnstock G (1973) An investigation of the identity of the transmitter substance released by non-adrenergic, non-cholinergic excitatory nerves supplying the small intestine of some lower vertebrates. Comp Gen Pharmacol 4:53–60

    Article  Google Scholar 

  • Souza CO, Santoro GF, Figliuolo VR, Nanini HF, de Souza HS, Castelo-Branco MT, Abalo AA, Paiva MM, Coutinho CM, Coutinho-Silva R (2012) Extracellular ATP induces cell death in human intestinal epithelial cells. Biochim Biophys Acta 1820:1867–1878

    Article  CAS  PubMed  Google Scholar 

  • Spencer NJ, Walsh M, Smith TK (2000) Purinergic and cholinergic neuro-neuronal transmission underlying reflexes activated by mucosal stimulation in the isolated guinea-pig ileum. J Physiol 522:321–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storr M, Franck H, Saur D, Schusdziarra V, Allescher HD (2000) Mechanisms of α, β-methylene ATPS-induced inhibition in rat ileal smooth muscle: involvement of intracellular Ca2+ stores in purinergic inhibition. Clin Exp Pharmacol Physiol 27:771–779

    Article  CAS  PubMed  Google Scholar 

  • Strong DS, Cornbrooks CF, Roberts JA, Hoffman JM, Sharkey KA, Mawe GM (2010) Purinergic neuromuscular transmission is selectively attenuated in ulcerated regions of inflamed guinea pig distal colon. J Physiol 588:847–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su C, Bevan JA, Burnstock G (1971) [3H]adenosine triphosphate: release during stimulation of enteric nerves. Science 173:337–339

    Article  Google Scholar 

  • Tamada H, Hashitani H (2014) Calcium responses in subserosal interstitial cells of the guinea-pig proximal colon. Neurogastroenterol Motil 26:115–123

    Article  CAS  PubMed  Google Scholar 

  • Thornton PD, Gwynne RM, McMillan DJ, Bornstein JC (2013) Transmission to interneurons is via slow excitatory synaptic potentials mediated by P2Y1 receptors during descending inhibition in guinea-pig ileum. PLoS One 8, e40840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valdez-Morales E, Guerrero-Alba R, Liñan-Rico A, Espinosa-Luna R, Zarazua-Guzman S, Miranda-Morales M, Montaño LM, Barajas-López C (2011) P2X7 receptors contribute to the currents induced by ATP in guinea pig intestinal myenteric neurons. Eur J Pharmacol 668:366–372

    Article  CAS  PubMed  Google Scholar 

  • Van Nassauw L, Brouns I, Adriaensen D, Burnstock G, Timmermans J-P (2002) Neurochemical identification of enteric neurons expressing P2X3 receptors in the guinea-pig ileum. Histochem Cell Biol 118:193–203

    PubMed  Google Scholar 

  • Van Nassauw L, Van Crombruggen K, De Jonge F, Burnstock G, Lefebvre RA, Timmermans J-P (2005) Distribution of P2Y receptor subtypes in the rat distal colon. Neurogastroenterol Motil 17:1

    Google Scholar 

  • Van Nassauw L, Costagliola A, Van Op den bosch J, Cecio A, Vanderwinden J-M, Burnstock G, Timmermans J-P (2006) Region-specific distribution of the P2Y4 receptor in enteric glial cells and interstitial cells of Cajal within the guinea-pig gastrointestinal tract. Auton Neurosci 126–127:299–306

    Article  PubMed  CAS  Google Scholar 

  • Vanderwinden JM, Timmermans JP, Schiffmann SN (2003) Glial cells, but not interstitial cells, express P2X7, an ionotropic purinergic receptor, in rat gastrointestinal musculature. Cell Tissue Res 312:149–154

    PubMed  Google Scholar 

  • Vial C, Evans RJ (2001) Smooth muscles does not have a common P2x receptor phenotype: expression, ontogeny and function of P2x1 receptors in mouse ileum, bladder and reproductive systems. Auton Neurosci 92:56–64

    Article  CAS  PubMed  Google Scholar 

  • Wang GD, Wang XY, Hu HZ, Liu S, Gao N, Fang X, Xia Y, Wood JD (2007) Inhibitory neuromuscular transmission mediated by the P2Y1 purinergic receptor in guinea pig small intestine. Am J Physiol Gastrointest Liver Physiol 292:G1483–G1489

    Article  CAS  PubMed  Google Scholar 

  • Wood JD (2006) The enteric purinergic P2Y1 receptor. Curr Opin Pharmacol 6:564–570

    Article  CAS  PubMed  Google Scholar 

  • Wunderlich JE, Needleman BJ, Chen Z, Yu JG, Wang Y, Grants I, Mikami DJ, Melvin WS, Cooke HJ, Christofi FL (2008) Dual purinergic synaptic transmission in the human enteric nervous system. Am J Physiol Gastrointest Liver Physiol 294:G554–G566

    Article  CAS  PubMed  Google Scholar 

  • Wynn G, Burnstock G (2006) Adenosine 5′-triphosphate and it’s relationship with other mediators that activate pelvic afferent neurons in the rat colorectum. Purinergic Signal 2:517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn G, Rong W, Xiang Z, Burnstock G (2003) Purinergic mechanisms contribute to mechanosensory transduction in the rat colorectum. Gastroenterology 125:1398–1409

    Article  CAS  PubMed  Google Scholar 

  • Wynn G, Bei M, Ruan H-Z, Burnstock G (2004) Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol 287:G647–G657

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2004a) Development of nerves expressing P2X3 receptors in the myenteric plexus of rat stomach. Histochem Cell Biol 122:111–119

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2004b) P2X2 and P2X3 purinoceptors in the rat enteric nervous system. Histochem Cell Biol 121:169–179

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2005) Distribution of P2Y2 receptors in the guinea pig enteric nervous system and its coexistence with P2X2 and P2X3 receptors, neuropeptide Y, nitric oxide synthase and calretinin. Histochem Cell Biol 124:379–390

    Article  CAS  PubMed  Google Scholar 

  • Xiang Z, Burnstock G (2006) Distribution of P2Y6 and P2Y12 receptor: their colocalization with calbindin, calretinin and nitric oxide synthase in the guinea pig enteric nervous system. Histochem Cell Biol 125:327–336

    Article  CAS  PubMed  Google Scholar 

  • Xu GY, Shenoy M, Winston JH, Mittal S, Pasricha PJ (2008) P2X receptor-mediated visceral hyperalgesia in a rat model of chronic visceral hypersensitivity. Gut 57:1230–1237

    Article  CAS  PubMed  Google Scholar 

  • Ye JH, Rajendran VM (2009) Adenosine: an immune modulator of inflammatory bowel diseases. World J Gastroenterol 15:4491–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yiangou Y, Facer P, Baecker PA, Ford AP, Knowles CH, Chan CL, Williams NS, Anand P (2001) ATP-gated ion channel P2X3 is increased in human inflammatory bowel disease. Neurogastroenterol Motil 13:365–369

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Sun J, Guo W, Fu J, Xu X, Burnstock G, He C, Xiang Z (2010) Expression of P2X6 receptors in the enteric nervous system of the rat gastrointestinal tract. Histochem Cell Biol 133:177–188

    Article  CAS  PubMed  Google Scholar 

  • Zagorodnyuk V, Maggi CA (1998) Pharmacological evidence for the existence of multiple P2 receptors in the circular muscle of guinea-pig colon. Br J Pharmacol 123:122–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Galligan JJ (1996) P2X purinoceptors in cultured myenteric neurons of guinea-pig small intestine. J Physiol 496:719–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Galligan JJ (1998) Non-additive interaction between nicotinic cholinergic and P2X purine receptors in guinea-pig enteric neurons in culture. J Physiol 513:685–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann H (1994) Signalling via ATP in the nervous system. Trends Neurosci 17:420–426

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Burnstock, G. (2016). Purinergic Signalling in the Gut. In: Brierley, S., Costa, M. (eds) The Enteric Nervous System. Advances in Experimental Medicine and Biology(), vol 891. Springer, Cham. https://doi.org/10.1007/978-3-319-27592-5_10

Download citation

Publish with us

Policies and ethics