Skip to main content

Moment Closure—A Brief Review

  • Chapter
  • First Online:
Control of Self-Organizing Nonlinear Systems

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Moment closure methods appear in myriad scientific disciplines in the modelling of complex systems. The goal is to achieve a closed form of a large, usually even infinite, set of coupled differential (or difference) equations. Each equation describes the evolution of one “moment”, a suitable coarse-grained quantity computable from the full state space. If the system is too large for analytical and/or numerical methods, then one aims to reduce it by finding a moment closure relation expressing “higher-order moments” in terms of “lower-order moments”. In this brief review, we focus on highlighting how moment closure methods occur in different contexts. We also conjecture via a geometric explanation why it has been difficult to rigorously justify many moment closure approximations although they work very well in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Arnold, Stochastic Differential Equations: Theory and Applications (Wiley, 1974)

    Google Scholar 

  2. O. Kallenberg, Foundations of Modern Probability, 2nd edn. (Springer, New York, NY, 2002)

    Book  MATH  Google Scholar 

  3. C. Gardiner, Stochastic Methods, 4th edn. (Springer, Berlin Heidelberg, Germany, 2009)

    MATH  Google Scholar 

  4. T. Kurtz, J. Appl. Prob. 7(1), 49 (1970)

    Article  MathSciNet  Google Scholar 

  5. T. Kurtz, Stoch. Proc. Appl. 6(3), 223 (1978)

    Article  MathSciNet  Google Scholar 

  6. R. Darling, J. Norris, Prob. Surv. 5, 37 (2008)

    Article  MathSciNet  Google Scholar 

  7. A. Bátkai, I. Kiss, E. Sikolya, P. Simon, Netw. Heterog. Media 7, 43 (2012)

    Article  MathSciNet  Google Scholar 

  8. C. Levermore, J. Stat. Phys. 83(5), 1021 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Cercignani, Mathematical Methods in Kinetic Theory (Springer, 1969)

    Google Scholar 

  10. P. Krapivsky, S. Redner, E. Ben-Naim, A Kinetic View of Statistical Physics (CUP, 2010)

    Google Scholar 

  11. S. Mischler, C. Mouhot, Invent. Math. 193(1), 1 (2013)

    Article  MathSciNet  Google Scholar 

  12. M. Keeling, Proc. R. Soc. London B 266(1421), 859 (1999)

    Article  Google Scholar 

  13. D. Rand, CWI Quarterly 12(3), 329 (1999)

    Google Scholar 

  14. M. Taylor, P. Simon, D. Green, T. House, I. Kiss, J. Math. Biol. 64, 1021 (2012)

    Article  MathSciNet  Google Scholar 

  15. P. Simon, M. Taylor, I. Kiss, J. Math. Biol. 62(4), 479 (2011)

    Article  MathSciNet  Google Scholar 

  16. O. Diekmann, J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation (Wiley, 2000)

    Google Scholar 

  17. A.L. Do, T. Gross, in Adaptive Networks: Theory, Models, and Applications, ed. by T. Gross, H. Sayama (Springer, 2009), pp. 191–208

    Google Scholar 

  18. L. Socha, Linearization Methods for Stochastic Dynamic Systems (Springer, 2008)

    Google Scholar 

  19. A. Ekanayake, L. Allen, Stoch. Anal. Appl. 28, 907 (2010)

    Article  MathSciNet  Google Scholar 

  20. I. Kiss, P. Simon, Bull. Math. Biol. 74(7), 1501 (2012)

    Article  MathSciNet  Google Scholar 

  21. I. Krishnarajah, A. Cook, G. Marion, G. Gibson, Bull. Math. Biol. 67(4), 855 (2005)

    Article  MathSciNet  Google Scholar 

  22. I. Krishnarajah, A. Cook, G. Marion, G. Gibson, Math. Biosci. 208(2), 621 (2007)

    Article  MathSciNet  Google Scholar 

  23. E. Jaynes, Proc. IEEE 70(9), 939 (1982)

    Article  ADS  Google Scholar 

  24. C. Levermore, W. Morokoff, SIAM J. Appl. Math. 59(1), 72 (1998)

    Google Scholar 

  25. C. Cercignani, The Boltzmann Equation and Its Applications (Springer, 1988)

    Google Scholar 

  26. H. Spohn, Rev. Mod. Phys. 52(3), 569 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  27. F. Golse, L. Saint-Raymond, Invent. Math. 155(1), 81 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Keeling, D. Rand, A. Morris, Proc. R. Soc. B 264(1385), 1149 (1997)

    Article  ADS  Google Scholar 

  29. M. Keeling, K. Eames, J.R. Soc, Interface 2(4), 295 (2005)

    Google Scholar 

  30. T. Gross, C.D. D’Lima, B. Blasius, Phys. Rev. Lett. 96, (208701) (2006)

    Google Scholar 

  31. J. Stark, P. Iannelli, S. Baigent, Nonl. Anal. 47, 753 (2001)

    Article  MathSciNet  Google Scholar 

  32. U. Dieckmann, R. Law, in The Geometry of Ecological Interactions: Simplifying Spatial Complexity, ed. by U. Dieckmann, R. Law, J. Metz (CUP, 2000), pp. 412–455

    Google Scholar 

  33. J. Pacheco, A. Traulsen, M. Nowak, Phys. Rev. Lett. 97, (258103) (2006)

    Google Scholar 

  34. C. Kuehn, Multiple Time Scale Dynamics (Springer, 2015). 814 pp

    Google Scholar 

  35. C. Jones, in Dynamical Systems (Montecatini Terme, 1994), Lect. Notes Math., vol. 1609 (Springer, 1995), pp. 44–118

    Google Scholar 

  36. L. Segel, M. Slemrod, SIAM Rev. 31(3), 446 (1989)

    Article  MathSciNet  Google Scholar 

  37. N. Fenichel, J. Differ. Equ. 31, 53 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Hasofer, M. Grigoriu, J. Appl. Mech. 62(2), 527 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  39. D. Pelinovsky, V. Zharnitsky, arXiv:1505.03354 (2015), pp. 1–45

  40. C.D. Genio, T. House, Phys. Rev. E 88(4), 040801 (2013)

    Article  Google Scholar 

  41. G. Böhme, T. Gross, Phys. Rev. E 83, (035101) (2011)

    Google Scholar 

  42. J. Kirkwood, J. Chem. Phys. 3(5), 300 (1935)

    Article  ADS  Google Scholar 

  43. R. Kikuchi, Phys. Rev. 81(6), 988 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  44. P. Whittle, J.R. Stat, Soc. B 19(2), 268 (1957)

    Google Scholar 

  45. V. Bolotin, Random Vibrations of Elastic Systems (Springer, 1984)

    Google Scholar 

  46. R. Ibrahim, Parametric Random Vibration (Dover, 2008)

    Google Scholar 

  47. J. Richardson, in Stochastic Processes in Mathematical Physics and Engineering, ed. by R. Bellman (AMS, 1964), pp. 290–302

    Google Scholar 

  48. N. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 2007)

    Google Scholar 

  49. G. Adomian, Stochastic Systems (Academic Press, 1983)

    Google Scholar 

  50. R. Bobryk, J. Math. Anal. Appl. 329(1), 703 (2007)

    Article  MathSciNet  Google Scholar 

  51. H. Grad, Comm. Pure Appl. Math. 2(4), 331 (1949)

    Article  MathSciNet  Google Scholar 

  52. H. Struchtrup, M. Torrilhon, Phys. Fluids 15(9), 2668 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  53. H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows (Springer, 2005)

    Google Scholar 

  54. R. Robson, R. White, Z. Petrović, Rev. Mod. Phys. 77(4), 1303 (2005)

    Article  ADS  Google Scholar 

  55. G. Hammett, F. Perkins, Phys. Rev. Lett. 64(25), 3019 (1990)

    Article  ADS  Google Scholar 

  56. L. Desvillettes, Arch. Rat. Mech. Anal. 123(4), 387 (1993)

    Article  MathSciNet  Google Scholar 

  57. T. Elmroth, Arch. Rat. Mech. Anal. 82(1), 1 (1983)

    Article  MathSciNet  Google Scholar 

  58. C. Groth, J. McDonald, Cont. Mech. Thermodyn. 21(6), 467 (2009)

    Article  MathSciNet  Google Scholar 

  59. C. Levermore, W. Morokoff, B. Nadiga, Phys. Fluids 10(12), 3214 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  60. J. McDonald, C. Groth, Cont. Mech. Thermodyn. 25(5), 573 (2013)

    Article  MathSciNet  Google Scholar 

  61. M. Torrilhon, H. Struchtrup, J. Fluid Mech. 513, 171 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  62. A. Singer, J. Chem. Phys. 121(8), 3657 (2004)

    Article  ADS  Google Scholar 

  63. R. Abramov, J. Comput. Phys. 226(1), 621 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  64. A. Rangan, D. Cai, Phys. Rev. Lett. 96(17), (178101) (2006)

    Google Scholar 

  65. J. Cernohorsky, S. Bludman, Astrophys. J. 433, 250 (1994)

    Article  ADS  Google Scholar 

  66. I. Csiszar, Ann. Stat. 19(4), 2032 (1991)

    Article  MathSciNet  Google Scholar 

  67. L. Borland, F. Pennini, A. Plastino, A. Plastino, Eur. J. Phys. B 12(2), 285 (1999)

    Article  ADS  Google Scholar 

  68. C. Bauch, Math. Biosci. 198, 217 (2005)

    Article  MathSciNet  Google Scholar 

  69. K. Sato, H. Matsuda, A. Sasaki, J. Math. Biol. 32(3), 215 (1994)

    Article  Google Scholar 

  70. J. Filipe, G. Gibson, Phil. Trans. R. Soc. London B 353(1378), 2153 (1998)

    Article  Google Scholar 

  71. J. Filipe, G. Gibson, Bull. Math. Biol. 63(4), 603 (2001)

    Article  Google Scholar 

  72. S. Ellner, J. Theor. Biol. 210(4), 435 (2001)

    Article  Google Scholar 

  73. M. Nakamaru, H. Matsuda, Y. Iwasa, J. Theor. Biol. 184(1), 65 (1997)

    Article  Google Scholar 

  74. H. Matsuda, N. Ogita, A. Sasaki, K. Sato, Prog. Theor. Phys. 88(6), 1035 (1992)

    Article  ADS  Google Scholar 

  75. T. Petermann, P.D.L. Rios, J. Theor. Biol. 229(1), 1 (2004)

    Article  Google Scholar 

  76. G. Rozhnova, A. Nunes, Phys. Rev. E 79(4), (041922) (2009)

    Google Scholar 

  77. S. Bansal, B. Grenfell, L. Meyers, J. R. Soc. Interface 4, 879 (2007)

    Article  Google Scholar 

  78. D. Rand, in Advanced Ecological Theory, ed. by J. McGlade (Wiley, 1994), pp. 100–142

    Google Scholar 

  79. S. Risau-Gusman, D. Zanette, J. Theor. Biol. 257, 52 (2009)

    Article  MathSciNet  Google Scholar 

  80. E. Volz, L. Meyers, Proc. R. Soc. B 274, 2925 (2007)

    Article  Google Scholar 

  81. T. House, G. Davies, L. Danon, M. Keeling, Bull. Math. Biol. 71(7), 1693 (2009)

    Article  MathSciNet  Google Scholar 

  82. M. Keeling, J. Theor. Biol. 205(2), 269 (2000)

    Article  MathSciNet  Google Scholar 

  83. B. Bolker, S. Pacala, Theor. Popul. Biol. 52(3), 179 (1997)

    Article  Google Scholar 

  84. B. Bolker, S. Pacala, Am. Nat. 153(6), 575 (1999)

    Article  Google Scholar 

  85. K. Hausken, J. Moxnes, Math. Comput. Mod. Dyn. Syst. 16(6), 555 (2010)

    Article  MathSciNet  Google Scholar 

  86. D. Hiebeler, Bull. Math. Biol. 68, 1315 (2006)

    Article  MathSciNet  Google Scholar 

  87. M. Bartlett, J. Gower, P. Leslie, Biometrika 47(1), 1 (1960)

    Article  MathSciNet  Google Scholar 

  88. J. Matis, T. Kiffe, Biometrics 52, 980 (1996)

    Article  Google Scholar 

  89. A. Singh, J. Hespanha, Bull. Math. Biol. 69(6), 1909 (2007)

    Article  MathSciNet  Google Scholar 

  90. J. Matis, T. Kiffe, Theor. Popul. Biol. 56(2), 139 (1999)

    Article  Google Scholar 

  91. I. Nåsell, Theor. Popul. Biol. 63(2), 159 (2003)

    Article  Google Scholar 

  92. I. Nåsell, Theor. Popul. Biol. 64(2), 233 (2003)

    Article  Google Scholar 

  93. T. Newman, J. Ferdy, C. Quince, Theor. Popul. Biol. 65(2), 115 (2004)

    Article  Google Scholar 

  94. O. Ovaskainen, S. Cornell, Proc. Natl. Acad. Sci. USA 103(34), 12781 (2006)

    Article  ADS  Google Scholar 

  95. R. Law, U. Dieckmann, in The Geometry of Ecological Interactions: Simplifying Spatial Complexity, ed. by U. Dieckmann, R. Law, J. Metz (CUP, 2000), pp. 252–270

    Google Scholar 

  96. P.A. Noël, B. Davoudi, R. Brunham, L.D. amd B. Pourbohloul, Phys. Rev. E 79, (026101) (2009)

    Google Scholar 

  97. M. Martcheva, H. Thieme, T. Dhirasakdanon, J. Math. Biol. 53, 642 (2006)

    Article  MathSciNet  Google Scholar 

  98. B. Bolker, S. Pacala, S. Levin, in The Geometry of Ecological Interactions: Simplifying Spatial Complexity, ed. by U. Dieckmann, R. Law, J. Metz (CUP, 2000), pp. 388–411

    Google Scholar 

  99. J. Miller, I. Kiss, Math. Mod. Nat. Phenom. 9, 4 (2014)

    Article  MathSciNet  Google Scholar 

  100. D. Murrell, U. Dieckmann, R. Law, J. Theor. Biol. 229, 421 (2004)

    Article  Google Scholar 

  101. T. Hillen, Discr. Cont. Dyn. Syst. B 4, 961 (2004)

    Article  MathSciNet  Google Scholar 

  102. T. Hillen, Discr. Cont. Dyn. Syst. B 5(2), 299 (2005)

    Article  MathSciNet  Google Scholar 

  103. T. Hillen, J. Math. Biol. 53(4), 585 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  104. M. Porter, J. Gleeson, Frontiers in Applied Dynamical Systems: Reviews and Tutorials, arXiv:1403.7663 (2014), pp. 1–32

  105. T. Gross, B. Blasius, J. R. Soc. Interface 5, 259 (2008)

    Article  Google Scholar 

  106. S. Bornholdt, T. Rohlf, Phys. Rev. Lett. 84(26), 6114 (2000)

    Article  ADS  Google Scholar 

  107. C. Kuehn, Phys. Rev. E 85(2), 026103 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  108. C. Nardini, B. Kozma, A. Barrat, Phys. Rev. Lett. 100, (158701) (2008)

    Google Scholar 

  109. D. Kimura, Y. Hayakawa, Phys. Rev. E 78, (016103) (2008)

    Google Scholar 

  110. V. Sood, S. Redner, Phys. Rev. Lett. 94, 178701 (2005)

    Article  ADS  Google Scholar 

  111. E. Pugliese, C. Castellano, Europhys. Lett. 88, (58004) (2009)

    Google Scholar 

  112. F. Vazquez, V. Eguíluz, New J. Phys. 10, (063011) (2008)

    Google Scholar 

  113. G. Demirel, F. Vazquez, G. Böhme, T. Gross, Phys. D 267, 68 (2014)

    Article  MathSciNet  Google Scholar 

  114. T. Gross, I. Kevrekidis, Europhys. Lett. 82, (38004) (2008)

    Google Scholar 

  115. L. Shaw, I. Schwartz, Phys. Rev. E 77, (066101) (2008)

    Google Scholar 

  116. L. Shaw, I. Schwartz, Phys. Rev. E 81, 046120 (2010)

    Article  ADS  Google Scholar 

  117. M. Taylor, T. Taylor, I. Kiss, arXiv:1110.4000v1 (2011)

  118. V. Marceau, P.A. Noël, L. Hébert-Dufresne, A. Allard, L. Dubé, Phys. Rev. E 82, (036116) (2010)

    Google Scholar 

  119. C. Kuehn, J. Nonlinear Sci. 23(3), 457 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  120. D. Zanette, S. Risau-Gusmán, J. Biol. Phys. 34, 135 (2008)

    Article  Google Scholar 

  121. G. Demirel, P. Prizak, P. Reddy, T. Gross, Eur. Phys. J. B 84, 541 (2011)

    Article  ADS  Google Scholar 

  122. F. Feng, T. Wu, L. Wang, Phys. Rev. E 79, (036101) (2009)

    Google Scholar 

  123. C.D. Genio, T. Gross, New J. Phys. 13, (103038) (2011)

    Google Scholar 

  124. T. Rogers, J. Stat. Mech. 2011, P05007 (2011)

    Google Scholar 

  125. M. Raghib, N. Hill, U. Dieckmann, J. Math. Biol. 62, 605 (2011)

    Article  MathSciNet  Google Scholar 

  126. J. Gleeson, Phys. Rev. X 3(2), 021004 (2013)

    Google Scholar 

  127. J. Gleeson, S. Melnik, J. Ward, M. Porter, P. Mucha, Phys. Rev. E 85(2), 026106 (2012)

    Article  ADS  Google Scholar 

  128. J. Gleeson, Phys. Rev. Lett. 107, (068701) (2011)

    Google Scholar 

  129. K. Eames, M. Keeling, Proc. Nat. Acad. Sci. USA 99(20), 13330 (2002)

    Article  ADS  Google Scholar 

  130. J. Lindquist, J. Ma, P.V. den Driessche, F. Willeboordse, J. Math. Biol. 62(2), 143 (2011)

    Article  MathSciNet  Google Scholar 

  131. H. Silk, G. Demirel, M. Homer, T. Gross, New J. Phys. 16(9), (093051) (2014)

    Google Scholar 

  132. B. Barzel, O. Biham, Phys. Rev. Lett. 106, (150602) (2011)

    Google Scholar 

  133. B. Barzel, O. Biham, Phys. Rev. E 86, (031126) (2012)

    Google Scholar 

  134. C.G. Uribe, G. Verghese, J. Chem. Phys. 126(2), 024109 (2007)

    Article  ADS  Google Scholar 

  135. C. Lee, K.H. Kim, P. Kim, J. Chem. Phys. 130, (134107) (2009)

    Google Scholar 

  136. S. Engblom, Appl. Math. Comput. 180(2), 498 (2006)

    Article  MathSciNet  Google Scholar 

  137. R. Bilger, Phys. Fluids A: Fluid Dyn. 5(2), 436 (1993)

    Article  ADS  Google Scholar 

  138. M. Roomina, R. Bilger, Combust. Flame 125(3), 1176 (2001)

    Article  Google Scholar 

  139. M. Mortensen, R. Bilger, Combust. Flame. 156(1), 62 (2009)

    Article  Google Scholar 

  140. A. Klimenko, Phys. Fluids 7(2), 446 (1995)

    Article  ADS  Google Scholar 

  141. S. Navarro-Martinez, A. Kronenbuerg, F.D. Mare, Flow, Turbul. Combust. 75(1), 245 (2005)

    Google Scholar 

  142. A. Klimenko, R. Bilger, Prog. Energy Combust. Sci. 25(6), 595 (1999)

    Article  Google Scholar 

  143. E. Baake, T. Hustedt, Markov Proc. Relat. Fields 17, 429 (2011)

    MathSciNet  Google Scholar 

  144. M. Guenther, J. Bradley, in Computer Performance Engineering (Springer, 2011), pp. 87–101

    Google Scholar 

  145. M. Guenther, A. Stefanek, J. Bradley, in Computer Performance Engineering (Springer, 2013), pp. 32–47

    Google Scholar 

  146. H. Singer, Comput. Stat. 21(3), 385 (2006)

    Article  Google Scholar 

  147. C. Gillespie, I.E.T. Syst, Biol. 3(1), 52 (2009)

    Google Scholar 

  148. T. Christen, F. Kassubek, J. Phys. D: Appl. Phys. 47, 363001 (2014)

    Article  Google Scholar 

  149. T. Brunner, J. Holloway, J. Quant. Spectr. Rad. Transfer 69(5), 543 (2001)

    Article  ADS  Google Scholar 

  150. M. Frank, B. Dubroca, A. Klar, J. Comput. Phys. 218(1), 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  151. H. Struchtrup, Ann. Phys. 257(2), 111 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  152. E. Volz, J. Math. Biol. 56, 293 (2008)

    Article  MathSciNet  Google Scholar 

  153. T. House, M. Keeling, J. R. Soc. Interface 8, 67 (2011)

    Article  Google Scholar 

  154. J. Miller, J. Math. Biol. 62(3), 349 (2011)

    Article  MathSciNet  Google Scholar 

  155. T. House, Bull. Math. Biol. 77(4), 646 (2015)

    Article  MathSciNet  Google Scholar 

  156. B. Blaszczyszyn, Stoch. Proc. Appl. 56(2), 321 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank the Austrian Academy of Science (ÖAW) for support via an APART Fellowship and the EU/REA for support via a Marie-Curie Integration Re-Integration Grant. Support by the Collaborative Research Center 910 of the German Science Foundation (DFG) to attend the “International Conference on Control of Self-Organizing Nonlinear Systems” in 2014 is also gratefully acknowledged. Furthermore, I would like to thank Thomas Christen, Thilo Gross, Thomas House and an anonymous referee for very helpful feedback on various preprint versions of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kuehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuehn, C. (2016). Moment Closure—A Brief Review. In: Schöll, E., Klapp, S., Hövel, P. (eds) Control of Self-Organizing Nonlinear Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-28028-8_13

Download citation

Publish with us

Policies and ethics